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1. Intuition in the didactical tradition
There is probably no adequate translation for the

German concept of Anschauung. It has connotations
that can only be understood in light of its history in
philosophical and didactical discourse.

/./ In the 19th century, the concepl of Anschawtng
(intuition) was markccl by a fundamental ambiguity.
On the one hand, Anschauung mcant to look con-

crctely at something, in the sense of cmpirical pcrccp-

tion; on the other hand, people always had a typc of
absaact intuition in rnind that signified a purely men-

tal representation of ideal objects or structures. This
double meaning of Anschauung car. already be found
in Pestalozzi (1746-1827): While emphasizing thc
pcdagogical significance of sensc perccptitln, he ncv-

crtheless formulated the pcdagogical dcmand "ttl lib-
erate Anschauung itsclf from the !imits of mcrc scnsa-

titrn" (quoted in Timerding, 1912, p. 11; our transla-

tion). With this view, Pestalozzi followed Kant' who

had systematically distinguishcd between empirical
ancl pure (a priori, nonempirical) intuition, defining
mathcmatiqs as that science which constructs its con-

ccpts in the pure intuition of space and timc (Kant'
l7lt1, pp. 741-742). Accordingly, Pestalozzi consid-

ercd the concept of numbcr to bc a crcation tlf thc
mincl that coulcl not bc rJerivcd from cxpcricncc. Thc
rolc of expericnce was only to provide an occasion to

actualize numbers (see Timerding,7912, pp. 13ff.).

Whatever views the German-speaking pedagogical

uuthors of the 19th century may have held, it was in-

tiisputable among thom that, though mathcmatics in-
\truction should start from expericnce, its main objcc-
rivc shoultl be to furthcr a nonempirical intuition bc-

roncl mere perccption. Frcqucntly thc dillbrcncc bc-

twcen Lhc two kinds of. Anschouur?8 was characterizcd
es thc contrast between äulSere and innere Anschowtng
i external an<l internal intuition). Tillich (1780-1807),

among others, considered innere Anschauung to be a
mental activity (Tillich, 1805; see Jahnke, 1990, p. 94).

According to Herbart (1776-11141), the aim of
mathcmatical education was to transfornt thc rcthe

.4,nschttuung (raw intuititln) of adolescents into a rcy'?

.lnschauung (mature intuition) (Hcrbart, 1802;

Jahnke, 1990). Subsequently, Hcrbart dcvclopeil this
itlea into his conception of the five fornral strps of
teaching - preparation, presentation, association,

ccneralization, and application - which became very

influcntial in elementary school pcdagogy in the sec-

ttn<I half of the 19th century, but only in narrow and

naivc interpretations.
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In a similar sense, Dicstcrweg (1790-1865) empha-

sized that the basic objccts of geometry are given only

in our internal intuition and "that they have to be

brought to clear consciousness by means of external

expericnce" (Diesterweg, 1828, P.260; see Schmidt,

1985, pp. 10ff.; Wintcr, 1984b).

1.2 This pcrlagogical emphasis on internal (mental)

intuition prcvalcnt in thc 19th century can only be

understootl if it is seen in the context of contem-

porary science and philosophy. The hermeneutic view

of the sciences promotecl the idea that intuition is not

a passive mode of cognition but always involves an

active effort of intcrprctation. Just as interpreting a

tcxt rcquircs imagination, infcrring an intended

mathematical objcct from a visual rcpresentation

presupposes an inncr productive power.'fherefore, in

the didactiüs of tlcscriptivc goomctry, stimulating the

internal intuition was a primary goal (Gugler, 1860)'

since dcriving complex, three-dimcnsional objects

from two-tlimensional representations requires an

active, productivc effort.
On the other hand, projective and algebraic geome-

try proviclcd a mathematical background for reflecting

on a t,vpc of intuition bcyond spatial reprcscntability.
Thc ovcrwhclming powcrs of mathematical synthesis

arising from the introduction of objccts that cannot

be intcrpr«.:t«l cmpirically (infinite points, lines, and

planes; imaginary elemcnts) gave rise to the ideal that

mt§ geontetrical reasoning should liberatc itself from
the awkwarclncss of individual figures and advance

without refercnce to concrete drawings (see Chasles'

183e, pp. 2(L5ff.).

1.-l With ths emcrgc of scicntism (undcr a neo-Kan-

tian inlluencc) in the sccond half of the 19th century,

the aims of eclucation al the Cynmasium wete deter-

mined more antl more bv content, and the concept of
Anschauung became peclagogically marginal. Now the

subjcct was Anschauttng und Strenge (intuition and

rigor), and it servcd to rcstrict intuitive thinking to
propactlcutic cxcrciscs. Evcn Fclix Klein's reforms,

which lctl to a rcvival of the dcbate on Anschauung,

wcrc, in principle, not succcssful in ovcrcoming this

rcstriction.
Only in the clementary school (Volksschule) did the

concept of Anschauung remain an essential reference

point for pedagogical work. ln this area, a tendenry
e merged ancl consolidatecl that has influenced
eicmentary school teaching up to this day: The visual

and physical intcrprctations of the clementary arith-
mctical opcrations scrved as a basis for decomposing

the numbcr conccpt into numerous different (and

frcquently only empirical) aspects, which afterwards

were to be taught through step-by-step procedures.

Already by the end of the 19th century, warnings were

given against thc negative consequences of this exag-

gerated "mcthodologization.'
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1.4 T\e different pedagogical conceptions of elemen-
tary school and Gymnasium remained decisive until
the 19«)s. In particular, important and fruitful ideas
were developed in the primary school that were de-
voted to an intuitive way of teaching mathematics
(see Griesel, 1985). The most recenr turn in rhe
discussion of Anschauung in Germany (and probably
world-wide) was connected with the reform
movement of the'new mathn and can be characterized
best by referring to Bruner's (1960) conception of
fundamental ideas. According to this conception,
enactive, iconic, and symbolic representations provide
different - though in a didactical sense equally
legitimate - modalities for depicting mathematical
knowledge. Thus, it seemed to be possible to teach
the fundamental ideas of mathematics to students of
any age in an adequate manner. This view offered the
theoretical and practical opportunity of linking again
the didactics of the elementary school to that of the
Gymnasium.

The so-called method of operators provides an in-
structive example of this approach. Originally, this
conception emerged in the teaching of fractions, the
fractional operators being illustrated as arrows or,
more drastically, as machines. Operators may be
viewed as functions, and since almost every mathe-
matical idea can be subsumed under this notion, the
function concept was subsequently made a guiding
principle for all mathematics teaching from the pri-
mary school until the end of the Gymnasium. For
about ten years, arrow diagrams played a prominent
role in German textbooks in many diverse contexts.

Because of unfavorable experience (see Gerster,
1984; Padberg, 1986), similar to that of other coun-
tries, the original hope was abandoned that such visu-
alizations could promote an outward unification of
the mathematics curriculum (as a substitute, so to
speak, for the conc€pt of function). But of course, as

mathematical tools, arrow diagrams are still being
used very efficiently and fruitfully in many fields and
on various levels. Engel's (1975) probability abacus is
an easily accessible example.

Today, most educators consider the construction of
visualizations no longer to be a separate field of work
but rather, as a rule, as something to be incorporated
into the development of large-scale teaching concep-
tions. A remarkable exception is provided by the
workshops on visualization in mathemafics held each
year in Klagenfurt (Kautschitsch & Metzler, 1982-
1989).

In recent years, the increasing availability of com-
puters has presented completely new opportunities
for visualization, thus changing the situation once
more. At present, it is difficult to anticipate the long-
term implications for mathematics instruction.

2. Mathematical rigor in science and in school
2.1 With the development of calculus into the domi-
nant mathematical subject in the senior classes of the

Gymnasium, the conflict between intuition and rigor
was transfcrred, in a modified manner, from 19th cen-
tury mathematics (Volkert, 1986) into the 20th cen-
tury school. While mathematical science has worked
out a feasible and adequate way of represenring its
knowledge in a semi-formal language, in school the
conflict still persists. There the problem cannot be
solvcd so long as many teachers and educators under-
stand mathematics - perhaps only subconsciously - as
that content-independent form of deduction which
they had taken pains to acquire during their studies.
They link it, in principle, to the supposedly rigorous
algebraic (symbolic) mode of doing mathematics,
while viewing geometrical arguments, in an alleged
contrast, as only intuitively acceptable.

The discussion about the respective relevance of in-
tuition and rigor in mathematics instruction that has

been going on in Germany since the 1950s can be
seen from some issues of the journal Der Mathe-
matihtnteniclr, with the titles "Geometrical Means in
Calculus" (Freund 1960; our translation) and
'Intuition and Rigor in Calculus' (I: Baur, 1957; Il &
III: Kropp, 1968 & 1969; IV: Blum & Kirsch, 1979a;
our translation). In Issues I to III (especially in II and
III), the allegcd conflict is solved by conceiving intu-
itive teaching as a method that is to be gradually re-
placed in the course of the calculus curriculum by an
increasing rigor, being reduced later to serving only as

intuitive background (Baur, 1957, p.4). After this
emphasis on rigor in the 1960s and 1970s, beginning
with Kirsch (1960) and increasingly in Issue IV, the
indcpendent importance of intuitive concepts is elab-
grated, at least for basic calculus courses. The authors
of that issue, however, had to defend themselles
againsl doubts about their mathematical competence
(Blum & Kirsch, 1979a,p.3).

This debate apparently no longer takes place today.
Although the emphasis on rigor did not resist the re-
ality of school, and collapsed into itself, one can r§-
sume that many teachers of senior classes still fed
bound to a certain ideal of rigor that alone gives them
the necessary safety in their subject. They consider i+'
tuitiveness as a concession to their students' limited
abilities.

2.2 Rigor, as a measure of the precision with whict
the rules, prescriptions, and standards of some field
are observed, is basically a socio-cultural category. lt
may refer to the rules of a game, administrative regu-

lations, the standards for scientific methods, or tbc
forms of discursive thought, reasoning, and disctx-
sion. Mathematics instruction, too, has to promotc
and cultivate these forms of intellectual acti\i§-
Mathematical rigor, however, is of a specific charactez

and cannot be transferred to other fields without sut>

stantial modifications. This specific character is not so

much a consequence of a complete rigor that, in dr-

dactical and philosophical statements about matbe-
matics, is frequently assumed to be realiiable. Rather
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it follows from the specific character of the mathe-

matical objects and fiom the social frame of mathe-

matical Practice.
The iäeal of mathematical rigor is modelled ac-

cording to the concept of a completely formalizable

theory developed in formal logic, which comprises

Uotn ä stock of uninterprete<l symbols and certain el-

cmentary propositions (axioms) from which further

propositions are formed that obey predefined rules in

ä purefy mechanical way. Thus, the idea of rigor im-

pties Uätn working in the formal mode with uninter-

pr","O concepts unO tn" completeness of deduction'
'Ho*"u"r, maihematicians consider these features of

rcasoning only as reference points and not as absolute

norms that must bc fulfilled completely'

Thc formal construction of arithmetic, together

with the consequent dccluction of seemingly simple

theorems such as "l' + 1 = 2," given by Whitehead

ancl Russell in the three volumes of their hincipia

Mathematica (1910-1913)' show that in mathematical

practice.o*piet"ne. s is unattainable , and undesirable '

Proofs that in the sense of formal logic have gaps are

thus not automatically considercd as violating math-

t:matical rigor. Whcther a proof is jutlged mathemati-

cally incomplete depends on many conditions that are

t,, *r" 
"rönt 

subject to historical change: Were the

gaps left intentionälly? Are they indicated as such?

ä" tn"y be closed? How much effort is needed to

close thäm? What is the author's reputation? What

arc the actual paradigms of mathernatics?

From the lägician-'s point of view, the naveragc"

professional m:ithcmatician does not work with unin-

i"rpr"t"d concepts. His or her language (about scts

anä funcrions) ii not formalized but rather fille«l with

interpreted concepts and phrases' Furthermore'

mathematicians, too, need, whether they are aware of

the fact or not, content-related, intuitive interpreta-

tions for the production and reception of proofs' That

is why a standard has emerged in mathematiqs that

migni tre called forntally nnthentatical and that is a

weaker variant of formaltv \ogical'

Whether a proof is acceptctl as mathcmatically rig-

orous cannot be decided dcfinitely but is subjcct to a

large measure of judgement' This uncertainty causes

the"expert to Ue ,iependent on other experts' that is'

on th; mathematical community' This dependency

cannot be removed by the use of machines either' and

it is so sweeping that a proof only becontes a proof 1f

and because- the community accepts it as such' The

social element inherent in the proccsses of establish-

ing proofs was introduce«i as a decisive argument into

tnä OiOactical debate by Thom (1970); later it was an-

alyzed in detail for the domain of mathematics by

Uänna (1983, pp.70ff.). Acmrding to Wittmann and

Müller (l98S;, ämong others' it should be taken into

consideiation in the domain of teaching, too' That

would be also pedagogically advantageous, as it would

recluce the teacher's central role in several respects'

For the mathematician, the formal point of view is

not an end in itself. Rather, it serves, firstly' to ensure

ot1*it"fy in a deductive manner and to communi-

*i. *orir*atical knowledge (not absolute truths

about the world). Secondly, many mathematical con-

cepts can only be expressed, arralyzed, and reflected by

*äun. of a formal and symbolic representation' In the

history of mathematics, the idea of infinity is a

paradigmatic cilse' but many concepts of elementary

matneäatics are also affected by this condition' And

,mJfy, formalization also has the critical function of

,rn.oue.ing inadmissible conclusions and tacit as-

sumptions.
Hänce, formal representation and deduction are

necessary components of elementary mathematical

activities, too, änd thereby the problems of learning

mathematics are increased enormously' On the one

hand, it is very difficult for the learner to establish a

cognitive distance from everyday experience' to exe-

cut"e the de-interpretation of concepts' and to assume

even a moderatäly formal attitude' on the other

hand, nonformal deductions often require' as all

"rp"ii"n." 
has shown, a high degree of training' as

inäy fu.t the reduction of complexity linked to formal

noätions. Therefore, it is quite unreasonable to

demand a solely intuitive way of doing mathematics in

the classroom and to clispense completely with formal

representations and deductions'

2.J In our opinion, an adequate conception by which

the interrel;tions between lntuition and rigor can be

understood theoretically and shaped practically-

"."rg", 
from realizing malhematical theories' even if

they äre worked out in a rather formalized way' as

necessarily bound tu rheir dontain of intended appli-

cations 1in ttre sense of Sneed, 1971; see also Jahnke'

1978). Äccording to the prevailing.opinion' mathe-

matiiians claim that the domains of intended applica-

tions for their theories are unbounded in principle'

Usually, this global character is achieved by taking

possibie restriitions in the range of a theorem as part

äf i,, urru*ptions, thus formally imparting to it its
universal nuirrr". This method of forcing the global

character is supplemented by the mathematicians'

siriving for "strong' theorems - that is, for assertions

that räch as far as possible together with assump-

tions that are as *eali as possible' Nonexpert readers

are usually unable to recognize (and they are often ac-

iir"ty t,rpported in their ignorance by-the authors'

t"nOLncy ä erase the traces of their work) that math-

ematical theorems, at least as they come into being'

are mostly relate«l very precisely to a certain spectrum

of problems and test lases that are to be investigated

with their helP.

Professional users of mathematics do not need the

mathematicians' claim of global validity' And in

school, anyway, mathematical concepts are treated

only with itrongty limited ranges' In this regard' in-

struction differs fundamentally from science' In

school, doing mathematics always means to be bound
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to concrete, very restricted domains of intended ap-
plications. (Here the notion of application is not to
be understood in a narrow sense; it also comprises
mathematical topics, contexts of use, etc.) By varying
such domains (e.g., the transition from two- to three-
dimensional space), students can possibly acquire a
first awareness of the problem of globality, but as they
lack the intensive cognitive socializalion of the pro-
fessional mathematician, they are not able to grasp
the substance of this idea. Yet abandoning completely
the claim for globality is not simply a necessary evil; it
is justified because in school, unlike in science, deal-
ing with mathematics is, in the first place, to promote
subjective insights.

Beyond these reasons, this fundamental deviation
from the paradigm of mathematics is by no means a
(necessary and legitimate) shortcoming. The assump-
tion of narrow domains of intended applications is in-
stead a prerequisite for intellectually honest reason-
ing on the school level, as it also narrows considerably
the domain of potential gaps in the argument, in
quality as well as in quantity, and enables the students
to direct their reasoning along content lines and not
just logically. In the tradition of Thom (7970),
Freudenthal (1973), and others, we believe that
mathematics instruction should deal with meaningful
statements about meaningful objects. This belief gives
rise to the following description of a concept of rigor
that in our opinion is appropriate for school:

Thesß 1: In school, mathentatical reasoning should
explicitly take place as content-related reasoning. With
this qualification, completeness is preserved as a local
requirement. Consequently, in school igor can only
mean sound reasoning in restricted dontains of intended
applications by means of interpreted concepts.

With this specification we deliberately leave wide
scope for what can be understood by "adequate rigor."
In fact, it is always a practical problem to develop an
appropriate orientation for the particular didactical
situation. Moreover, the idea of rigor is subject to his-
torical changes in the paradigms of mathematics itself
as well as of those of mathematics education, and it
depends, of course, on the special topic (e.g., geome-
try, algebra, calculus) and on the students'stages of
development. At any rate, that idea of rigor which in
our opinion is adequate (not only) for school allows
one ,o do igorous mathematics also in the inrufiive
mode of reasoning. Examples at different levels, in-
cluding explicit discussions of the problem, are to be
found in Kirsch (1979), Wittmann & Müller (1988),
and Blum & Kirsch (1991), among others.

Situations continually do occur, however, where the
students cannot finally judge independently the valid-
ity of an argument and the teacher's professional au-
thority is needed. This discrepancy produces a cogni-
tive asymmetry between the teacher's and the stu-
dents'roles. And it has always been an open problem
to reconcile this asymmetry with the pedagogical de-
mand for the principle of autonomous learning.
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We want to stress that within such a framework of
interpreted mathematics there is place as well for
formal representations and formal reasoning: Their
function is to sharpen locally one's own thinking, and
to serve as a means of reflection. The students, too,
should be given an impression of the logical power of
de-interpreting mathematical objects and of removing
the restrictions from the domains of intended applica-
tions, with which their universes of thinking (should)
largely coincide (e.g., by operating with "meaningless'
letters or by raising apparently absurd counterexam-
ples to propositions that seem to be obviously true).

3. Intuition and learning
3.1 If one trics to explain intuition in a positive way,
thc following three aspects prove to bc esscntial:
1. Inruition (as a mode of thinking),
2. Interpretation (activities directed at concepts, and

the results ofsuch activities), and
3. Intention (objectives, purposes, motives).
These aspects are loosely complementary to those
components of rigor that we discusscd in Section 2
(completeness, formalization, global character).

Whcrevcr inruifive thinking takcs place, it serves to
bridgc logical gaps in a (by narrow standards) gener-
ouJ manncr. Intuitions can bc anticipatory in the
coursc of solving a problem autonomously (e.9.,
finding a proof , as well as ffirnmti+,e, when working
on a given solution of a problem (e.g., studying a

given proof) (Fischbein, 1987).
In or<lcr to unfold, these two aspects of intuition

presupposc a familiar "cognitive spacc," and this space
is,prcparcd by thc interpretation of the concepts in-
volvcd. First, wc undcrstand interprelation as ascribing
meaning to concepts, primarily by anchoring them in
the real world (in a wide sense). But the phrase "in-
terpretation" also includes the embodiment of con-
cepts in some mathematical situation, where they can

be provided with a new meaning or with some mean-
ing, on the grounds of a new context, and where the
direct refcrence to the real world (taken literally) can

vanish.
Normally thc rccourse to thc rcal world takes place

on three lcvcls, antl each time some intended applica-
tions play a constituting role: Firstly, when concepu
are created (historically) or developed (practically) in
order to solve some problem (which is the case with
many geometrical concepts in an elementary way; se€

Bendcr & Schreiber, 1985); secondly, in didactical sit-
uotions in the classroom, which, by definition, have a

telcological character; and, thirdly, in those real-
world contcxts that are designed by curriculum devel-
opcrs as frameworks for teaching mathematical con-
tents.

The two aspects interpretation and intention are
ments of intuition, and they constitute it at the
time. It is important to note that they are closely
lerrelated. If a teacher disregards this
they often produce unfruitful conflicts for the
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,+Alr =d:+b'z
,+b+c)! =d+b)
a+b+c+d)1=a')+b)

dents. For example, the well-known geometrization of
the binomial formula by rectangular areas offers an

appropriate picture, but it may distract from the in-
tentions actually pursued, namely making the struc-

tures of the formula transparent. For these intentions
a visualization like the following may be better:

+c'
+c'+tl'

ac
dc

bc)
a.d+bc+bd+cd)

and so forth.
It offers directly insights that immediately refer to

thc structure of the exPression.

.1.2 The obvious discrepanry between the unintcr-
prcted (abstract) concepts of mathematic's and the in-
tcrpreted (concrete) concepts of humans (in particu-

lar, noviccs) makes mathcmatic.s teaching a <litficult
job. Interpretecl concepts are embedded in much

richer contexts, which are (didactically) more or less

productive and which are not merely analogous map-

pings of mathematical relations.
How to cope with this richness; how to judge the

rtutlcnts' conccptions; how to create, dcvelop, or
e liminate them (if ncccssary) - thcse issucs are usually

not touched upon in thc classical, contcnt-oricntctl
tcacher education at the univcrsity. But in the clisci-

pline of ditlactics of mathematics, too, considcrable
deficits exist concerning these questions.

Plenty of examples and techniques of visualizations

lre available. But they arc often bound up with the

principle of chopping mathematics lessons into tiny
methtxlological pieccs bir which tcachers and tcxt-

book authors scck to ovorcomc the primac,v ol ab-

\tract rigor, in which they still believc eithcr overtly
i-rr subliminally (see thc textbook critique bv Keitcl,
Otte, & Seeger, 1980, chap.7). With this over-mcth-
odization, mathematics education runs the risk of
hurying the central ideas of the discipline (in the

scnse of Schreiber, 1983) and - paradoxically - even of
()bstrucl.ing learning proccsses.

.1.3 With regartl to tho prcscnt imptlrtanc:e tlf visual

communication by way of plane media like papcr'
television screens, computer scrccns, and so forth, vis-

ualizations (and in particular, geometrical. two-di-
mensional relations) are thc prcvailing type of inter-
pretations, either actually rcalized or only prcpared
lor the students to imaginc. 'lhcy are easily availablc
(which has bcen so all along, but the possibilitics have

bcen immensely extcndcd with the hclp o[ computer

tcchnology). Real spacc is part of cvcryonc's olcmen-

tary experience. On the one hand, its structurc is rich

enough for generating or rcpresenting cven complex
mathematical concepts and relations; on the other
hand, it is sufficiently poor to limit exlra-mathemati-
cal meaning to the dcsired scope. But above all, stu-

dents are seemingly ablc to undcrstand such visualiza-
tions without spccial prcrcquisitcs.

Apart from visualizations, there are interpretations
in many other fields. The first is elementary physics'

Beyond that, there are many contexts in everyday life
and in vocational life, not to mention technology,

natural sciences, economics, and so forth, that can be

utilized for interpretations (Blum & TÖrner, 1983,

p.92).But the more elaborate these situations are,

the more the students, as well as the teacher, have to

provide specific knowleclge, and they run the risk of
being clistracted from those (mathcmatical) concepts

they were originally interested in.
It is a widespread fundamental error to assign au-

tomatic intelligibility to pure visualizations (and to

other embodiments in everyday life) because they of-

ten do not require any spccific knowledge, even about

gcomctry. But as is shown by much teaching experi-

ence and by empirical rescarch (c'g., by the investiga-

tions of Schipper, 1982, in the paradigmatic field of
primary school arithmetic):

Thesis 2: Interpretations, er)en geometrical ones' are

not "pictures speaking by thentselves." They can fulfill
their purposes only on the basis of the leamers' active

consmtction of meaning. In each case, they, as well as

rheir relotions to other interpretations and to the

untlertying concepts, hav'e to be leorned anew.

Dcviccs mcant to facilitate mathematics learning

(namely interpretations) actually seem to impede it at

first (this amazing observation was also made by

Kirsch, 1977). But it is just the additional intellectual
effort needed for the constitution and transfer of
meaning that establishes the basis for the desired suc-

cess. Dcaling with thc prcliminary understanding and

opinions o[.ttthcr parlicipants in the discourse is an-

othor osscntial part of thc constitution of meaning,

ancl at the samc timc, interprctations, again, are

ncecled as fornnts (in thc sense of Bruner) for such

discussions (Fischer & Malle, 1985; Krummheuer,

1989b).
we now want t0 illustrate our second thesis with

the cxample of the arithmetic ntean, when interpreted

as the supporting point of a beam with several loads

in balance, that is, as thc center of gravity. The inter-
prctation ()f «lncepts an«I relations by mcans of grav-

ity is the basis of a whole class of lär-reaching mathe-

matical consi«lerations; for instance: Archimedes' de-

terminations of areas; the instrumental construction

of the Torricelli point of a triangle (to be found in Li-
etzmann, 1959, p.98); Winter's geometry starting

from thc laws of lever (1978); Spiegcl's mean value

abacus, ctesigned for the primary grades (1985); Hei-
tlcnrcich's red wine proot of the regularity of the

hexagon in the micldle of a cube (1987)' and many

morc.
The metaphor of the beam in balance aims at cre-

ating one ofseveral suitable basic conceptions (in the

sense of Bender, 1991) of the arithmetic mean (see

Fig.1). Thc figure alone, however, does not explain

anything. At first, one has to interpret the real line
(or rather thc interval in question) as a beam without

+
+

+
+

+
+
+

2ab
2(ab
2(ab
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weight (situated horizontally in the field of gravity,
which is supposed to be homogeneous), and each of
the n numbefs air i = 1, . . ., il, as a loadwith unit
weight, fixed to the beam at the position a, (as long as

all numbers are different). In the general case, if the
numbers ai occur with the frequencies k1 (ki e N),
then at each position a, have to be fixed kr loads with
unit weight, or one load made up of kt units. This
construction gives rise to a fundamental cognitive ob-
stacle that the students have to overcome: the need to
interpret the original objects (the numbers ai) now as

positions, and the original attributes (the frequencies
k1) now as objects.
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role already at the beginning of the 19th century" It is
no longer simply a normative leading idea of educa-
tional thinking, but a suitable theoretical model for
describing actual learning processes and thereby sup
porting that idea.

Thesis 3: Not onty are interpretations to convq thc

allegedly static meanings of nrathematical concepts, but
they hold new relations and thus contain the germ for
new, farther-reaching insights. In addition to their
explicatory function, thq are provided with an s-
ploratory character that can be utilbed for a ho'
meneutic working style in mathematics instntction as

well.

3.5 In the end, visualizations can assume abstracl,
symbol-like forms. This possibility allows us to treat
them like symbols, and correspondingly to see sym-

bols as visualizations (one could call this the pincipb
of nonvßual inruition). To evolve their cognitirc
power, both visualizations and symbols have to be in-
terpreted, although they are grounded in epistemol-
ogically different states (Jahnke, 1984). Consider

some examples. Discussing the mathematical concept

of function, Kiesow and Spallek (1983) emphasize the

epistemokrgic potential of the symbolic mode. Ottc
(1983) and Fischer (198aa) indicate the intuitir't
power of the graphical arrangement of formulas. Thc

example we discussed above also supports these ideas

Furthermore, we want to name matrices
linear mappings, probability spaces standing for ran-

dom experiments, and graphs embodying abstract

mathematical ideas, but they demand an active

struction of meaning. They contain new

and promote exploratory ways of doing mathemati§
In these cases, it is the trait of being an object

provides intuitive accessibility. By concentrating
this feature and doing without the sharp contours
consistency attached to real-world facts, one can

make accessible in a nonvisual way such unruly
cepts as infinite point in projective geometry,

nary root in the theory of equations, and local ratc

change in calculus (Jahnke, 1989). As these

suggest, the concepts are to be thought of as

cases situated on, or beyond, the boundary of the

main of "ordinaryn cases. Their interpretations ciu
imagine«l vaguely as limits of the visualizations of
rtinary cases, and again, they can be used to shed

on thc ordinary cases from a new perspective.

I rb+ 4 4b6 q

Fig.1: Balance beam

When the beam is supported at a point, it turns into
a balance. It is immediately clear that there is one and

only one point where the beam is in balance and that
this point is somewhere in the "middle.' If the left side
drops, one has to support the beam at a point farther
left to reduce the larger torque on the left and to in-
crease the smaller torque on the right. In fact, one has

to go to the left to the point where the two torques
are equal. These ideas are plausible even without an
elaborate conception of torque and the quantitative
laws of lever.

If one knows these laws, one can formulate the facts

in the following way: lrt ä be the point of equilib-
rium, and let m be a natural number (1 < m < n) so

that the positions a, with i < m lie to the left of (or in-
clude) ä-, and those'with i > m lie to its right. Then we

have X1.* \(a-- a) = Xi>m ki(ai - a-).This equation
is well k-nöwn as descriptibnof the equilibrium, and it
now has to be recognized as determining a.

If one has the concepts of negative numbers and

negative lengths, then the equation simplifies to
Etki(a- - ai) = 0, with arbitrary numbering of the ar's.

Thi§ equation is a characterization of the arithmetic
mean ä (= point of equilibrium) by the fact that the
sum of the deviations from a (= sum of the torques)
vanishes, that is, that the negative deviations exactly

compensate for the positive ones. The contrast to the
mean (linear) deviation tiki lä - ai I is apparent, and

there are close relations io other interpretations of
the arithmetic mean, given, for example, by the ex-

pressions (:iki)a- = Xikia, and ä = X1G1l:1\)ai.

3.4 This example shows not only that the demand for
an active construction of meaning is essential for
clari§ing the concepts in question but also that, at
the same time, it opens new conceptual fields and

provokes their exploration. Here again one meets the
idea of hermeneutics, which had played an important
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