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Intuition and rigor in mathematics instruc-
tion

Peter BENDER, Universitit Paderborn
Hans Niels JAHNKE, Universitit Bielefeld/IDM

1. Intuition in the didactical tradition
There is probably no adequate translation for the
German concept of Anschauung. It has connotations
that can only be understood in light of its history in
philosophical and didactical discourse.

1.1 In the 19th century, the concept of Anschauung
(intuition) was marked by a fundamental ambiguity.
On the one hand, Anschauung meant to look con-
cretely at something, in the sense of empirical percep-
tion; on the other hand, people always had a type of
abstract intuition in mind that signified a purely men-
tal representation of ideal objects or structures. This
double meaning of Anschauung can already be found
in Pestalozzi (1746-1827): While emphasizing the
pedagogical significance of sense perception, he nev-
ertheless formulated the pedagogical demand "to lib-
erate Anschauung itself from the limits of mere sensa-
tion" (quoted in Timerding, 1912, p. 11; our transla-
tion). With this view, Pestalozzi followed Kant, who
had systematically distinguished between empirical
and pure (a priori, nonempirical) intuition, defining
mathematics as that science which constructs its con-
cepts in the pure intuition of space and time (Kant,
1781, pp. 741-742). Accordingly, Pestalozzi consid-
ered the concept of number to be a creation of the
mind that could not be derived from experience. The
role of experience was only to provide an occasion to
actualize numbers (see Timerding, 1912, pp. 13ft.).

Whatever views the German-speaking pedagogical
authors of the 19th century may have held, it was in-
disputable among them that, though mathematics in-
struction should start from experience, its main objec-
tive should be to further a nonempirical intuition be-
yond mere perception. Frequently the difference be-
tween the two kinds of Anschauung was characterized
as the contrast between dufere and innere Anschauung
(external and internal intuition). Tillich (1780-1807),
among others, considered innere Anschauung to be a
mental activity (Tillich, 1805; see Jahnke, 1990, p. 94).

According to Herbart (1776-1841), the aim of
mathematical education was to transform the rohe
Anschauung (raw intuition) of adolescents into a reife
Anschauung (mature intuition) (Herbart, 1802,
Jahnke, 1990). Subsequently, Herbart developed this
idea into his conception of the five formal steps of
teaching - preparation, presentation, association,
generalization, and application - which became very
influential in elementary school pedagogy in the sec-
ond half of the 19th century, but only in narrow and
naive interpretations.
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In a similar sense, Diesterweg (1790-1866) empha-
sized that the basic objects of geometry are given only
in our internal intuition and "that they have to be
brought to clear consciousness by means of external
experience" (Diesterweg, 1828, p. 260; see Schmidt,
1985, pp. 10ff.; Winter, 1984b).

1.2 This pedagogical emphasis on internal (mental)
intuition prevalent in the 19th century can only be
understood if it is seen in the context of contem-
porary science and philosophy. The hermeneutic view
of the sciences promoted the idea that intuition is not
a passive mode of cognition but always involves an
active effort of interpretation. Just as interpreting a
text requires imagination, inferring an intended
mathematical object from a visual representation
presupposes an inner productive power. Therefore, in
the didactics of descriptive geometry, stimulating the
internal intuition was a primary goal (Gugler, 1860),
since deriving complex, three-dimensional objects
from two-dimensional representations requires an
active, productive effort.

On the other hand, projective and algebraic geome-
try provided a mathematical background for reflecting
on a type of intuition beyond spatial representability.
The overwhelming powers of mathematical synthesis
arising from the introduction of objects that cannot
be interpreted empirically (infinite points, lines, and
planes; imaginary elements) gave rise to the ideal that
truly geometrical reasoning should liberate itself from
the awkwardness of individual figures and advance
without reference to concrete drawings (see Chasles,
1839, pp. 2051t.).

1.3 With the emerge of scientism (under a neo-Kan-
tian influence) in the second half of the 19th century,
the aims of education at the Gymnasium were deter-
mined more and more by content, and the concept of
Anschauung became pedagogically marginal. Now the
subject was Anschauung und Strenge (intuition and
rigor), and it served to restrict intuitive thinking to
propaedeutic exercises. Even Felix Klein’s reforms,
which led to a revival of the debate on Anschauung,
were, in principle, not successful in overcoming this
restriction.

Only in the elementary school (Volksschule) did the
concept of Anschauung remain an essential reference
point for pedagogical work. In this area, a tendency
emerged and consolidated that has influenced
elementary school teaching up to this day: The visual
and physical interpretations of the elementary arith-
metical operations served as a basis for decomposing
the number concept into numerous different (and
frequently only empirical) aspects, which afterwards
were to be taught through step-by-step procedures.
Already by the end of the 19th century, warnings were
given against the negative consequences of this exag-
gerated "methodologization."
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1.4 The different pedagogical conceptions of elemen-
tary school and Gymnasium remained decisive until
the 1960s. In particular, important and fruitful ideas
were developed in the primary school that were de-
voted to an intuitive way of teaching mathematics
(see Griesel, 1985). The most recent turn in the
discussion of Anschauung in Germany (and probably
world-wide) was connected with the reform
movement of the "new math" and can be characterized
best by referring to Bruner’s (1960) conception of
fundamental ideas. According to this conception,
enactive, iconic, and symbolic representations provide
different - though in a didactical sense equally
legitimate - modalities for depicting mathematical
knowledge. Thus, it seemed to be possible to teach
the fundamental ideas of mathematics to students of
any age in an adequate manner. This view offered the
theoretical and practical opportunity of linking again
the didactics of the elementary school to that of the
Gymnasium.

The so-called method of operators provides an in-
structive example of this approach. Originally, this
conception emerged in the teaching of fractions, the
fractional operators being illustrated as arrows or,
more drastically, as machines. Operators may be
viewed as functions, and since almost every mathe-
matical idea can be subsumed under this notion, the
function concept was subsequently made a guiding
principle for all mathematics teaching from the pri-
mary school until the end of the Gymnasium. For
about ten years, arrow diagrams played a prominent
role in German textbooks in many diverse contexts.

Because of unfavorable experience (see Gerster,
1984; Padberg, 1986), similar to that of other coun-
tries, the original hope was abandoned that such visu-
alizations could promote an outward unification of
the mathematics curriculum (as a substitute, so to
speak, for the concept of function). But of course, as
mathematical tools, arrow diagrams are still being
used very efficiently and fruitfully in many fields and
on various levels. Engel’s (1975) probability abacus is
an easily accessible example.

Today, most educators consider the construction of
visualizations no longer to be a separate field of work
but rather, as a rule, as something to be incorporated
into the development of large-scale teaching concep-
tions. A remarkable exception is provided by the
workshops on visualization in mathematics held each
year in Klagenfurt (Kautschitsch & Metzler, 1982-
1989).

In recent years, the increasing availability of com-
puters has presented completely new opportunities
for visualization, thus changing the situation once
more. At present, it is difficult to anticipate the long-
term implications for mathematics instruction.

2. Mathematical rigor in science and in school

2.1 With the development of calculus into the domi-
nant mathematical subject in the senior classes of the
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Gymnasium, the conflict between intuition and rigor
was transferred, in a modified manner, from 19th cen-
tury mathematics (Volkert, 1986) into the 20th cen-
tury school. While mathematical science has worked
out a feasible and adequate way of representing its
knowledge in a semi-formal language, in school the
conflict still persists. There the problem cannot be
solved so long as many teachers and educators under-
stand mathematics - perhaps only subconsciously - as
that content-independent form of deduction which
they had taken pains to acquire during their studies.
They link it, in principle, to the supposedly rigorous
algebraic (symbolic) mode of doing mathematics,
while viewing geometrical arguments, in an alleged
contrast, as only intuitively acceptable.

The discussion about the respective relevance of in-
tuition and rigor in mathematics instruction that has
been going on in Germany since the 1950s can be
seen from some issues of the journal Der Mathe-
matikunterricht with the titles "Geometrical Means in
Calculus" (Freund 1960; our translation) and
"Intuition and Rigor in Calculus" (I: Baur, 1957; II &
III: Kropp, 1968 & 1969; IV: Blum & Kirsch, 1979a;
our translation). In Issues I to III (especially in II and
III), the alleged conflict is solved by conceiving intu-
itive teaching as a method that is to be gradually re-
placed in the course of the calculus curriculum by an
increasing rigor, being reduced later to serving only as
intuitive background (Baur, 1957, p.4). After this
emphasis on rigor in the 1960s and 1970s, beginning
with Kirsch (1960) and increasingly in Issue IV, the
independent importance of intuitive concepts is elab-

.orated, at least for basic calculus courses. The authors

of that issue, however, had to defend themselves
against doubts about their mathematical competence
(Blum & Kirsch, 1979a, p. 3).

This debate apparently no longer takes place today.
Although the emphasis on rigor did not resist the re-
ality of school, and collapsed into itself, one can as-
sume that many teachers of senior classes still feel
bound to a certain ideal of rigor that alone gives them
the necessary safety in their subject. They consider in-
tuitiveness as a concession to their students’ limited
abilities.

2.2 Rigor, as a measure of the precision with which
the rules, prescriptions, and standards of some field
are observed, is basically a socio-cultural category. It
may refer to the rules of a game, administrative rege-
lations, the standards for scientific methods, or the
forms of discursive thought, reasoning, and discus-
sion. Mathematics instruction, too, has to promote
and cultivate these forms of intellectual activity
Mathematical rigor, however, is of a specific character
and cannot be transferred to other fields without sub-
stantial modifications. This specific character is not se
much a consequence of a complete rigor that, in di
dactical and philosophical statements about mathe-
matics, is frequently assumed to be realizable. Rathez.



it follows from the specific character of the mathe-
matical objects and from the social frame of mathe-
matical practice.

The ideal of mathematical rigor is modelled ac-
cording to the concept of a completely formalizable
theory developed in formal logic, which comprises
both a stock of uninterpreted symbols and certain el-
ementary propositions (axioms) from which further
propositions are formed that obey predefined rules in
a purely mechanical way. Thus, the idea of rigor im-
plies both working in the formal mode with uninter-
preted concepts and the completeness of deduction.
However, mathematicians consider these features of
reasoning only as reference points and not as absolute
norms that must be fulfilled completely.

The formal construction of arithmetic, together
with the consequent deduction of seemingly simple
theorems such as "1 + 1= 2," given by Whitehead
and Russell in the three volumes of their Principia
Mathematica (1910-1913), show that in mathematical
practice completeness is unattainable, and undesirable.
Proofs that in the sense of formal logic have gaps are
thus not automatically considered as violating math-
ematical rigor. Whether a proof is judged mathemati-
cally incomplete depends on many conditions that are
to some extent subject to historical change: Were the
gaps left intentionally? Are they indicated as such?
Can they be closed? How much effort is needed to
close them? What is the author’s reputation? What
are the actual paradigms of mathematics?

From the logician’s point of view, the "average"
professional mathematician does not work with unin-
terpreted concepts. His or her language (about sets
and functions) is not formalized but rather filled with
interpreted concepts and phrases. Furthermore,
mathematicians, too, need, whether they are aware of
the fact or not, content-related, intuitive interpreta-
tions for the production and reception of proofs. That
is why a standard has emerged in mathematics that
might be called formally mathematical and that is a
weaker variant of formally logical.

Whether a proof is accepted as mathematically rig-
orous cannot be decided definitely but is subject to a
large measure of judgement. This uncertainty causes
the expert to be dependent on other experts, that is,
on the mathematical community. This dependency
cannot be removed by the use of machines either, and
it is so sweeping that a proof only becomes a proof if
and because the community accepts it as such. The
social element inherent in the processes of establish-
ing proofs was introduced as a decisive argument into
the didactical debate by Thom (1970); later it was an-
alyzed in detail for the domain of mathematics by
Hanna (1983, pp. 70ff.). According t0 Wittmann and
Miiller (1988), among others, it should be taken into
consideration in the domain of teaching, too. That
would be also pedagogically advantageous, as it would
reduce the teacher’s central role in several respects.

For the mathematician, the formal point of view is
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not an end in itself. Rather, it serves, firstly, to ensure
objectively in a deductive manner and to communi-
cate mathematical knowledge (not absolute truths
about the world). Secondly, many mathematical con-
cepts can only be expressed, analyzed, and reflected by
means of a formal and symbolic representation. In the
history of mathematics, the idea of infinity is a
paradigmatic case, but many concepts of elementary
mathematics are also affected by this condition. And
thirdly, formalization also has the critical function of
uncovering inadmissible conclusions and tacit as-
sumptions.

Hence, formal representation and deduction are
necessary components of elementary mathematical
activities, too, and thereby the problems of learning
mathematics are increased enormously. On the one
hand, it is very difficult for the learner to establish a
cognitive distance from everyday experience, to exe-
cute the de-interpretation of concepts, and to assume
even a moderately formal attitude. On the other
hand, nonformal deductions often require, as all
experience has shown, a high degree of training, as
they lack the reduction of complexity linked to formal
notations. Therefore, it is quite unreasonable to
demand a solely intuitive way of doing mathematics in
the classroom and to dispense completely with formal
representations and deductions.

2.3 In our opinion, an adequate conception by which
the interrelations between intuition and rigor can be
understood theoretically and shaped practically
emerges from realizing mathematical theories, even if
théy are worked out in a rather formalized way, as
necessarily bound to their domain of intended appli-
cations (in the sense of Sneed, 1971; see also Jahnke,
1978). According to the prevailing opinion, mathe-
maticians claim that the domains of intended applica-
tions for their theories are unbounded in principle.
Usually, this global character is achieved by taking
possible restrictions in the range of a theorem as part
of its assumptions, thus formally imparting to it its
universal nature. This method of forcing the global
character is supplemented by the mathematicians’
striving for "strong" theorems - that is, for assertions
that reach as far as possible together with assump-
tions that are as weak as possible. Nonexpert readers
are usually unable to recognize (and they are often ac-
tively supported in their ignorance by the authors’
tendency to erase the traces of their work) that math-
ematical theorems, at least as they come into being,
are mostly related very precisely to a certain spectrum
of problems and test cases that are t0 be investigated
with their help.

Professional users of mathematics do not need the
mathematicians’ claim of global validity. And in
school, anyway, mathematical concepts are treated
only with strongly limited ranges. In this regard, in-
struction differs fundamentally from science. In
school, doing mathematics always means to be bound
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to concrete, very restricted domains of intended ap-
plications. (Here the notion of application is not to
be understood in a narrow sense; it also comprises
mathematical topics, contexts of use, etc.) By varying
such domains (e.g., the transition from two- to three-
dimensional space), students can possibly acquire a
first awareness of the problem of globality, but as they
lack the intensive cognitive socialization of the pro-
fessional mathematician, they are not able to grasp
the substance of this idea. Yet abandoning completely
the claim for globality is not simply a necessary evil; it
is justified because in school, unlike in science, deal-
ing with mathematics is, in the first place, to promote
subjective insights.

Beyond these reasons, this fundamental deviation
from the paradigm of mathematics is by no means a
(necessary and legitimate) shortcoming. The assump-
tion of narrow domains of intended applications is in-
stead a prerequisite for intellectually honest reason-
ing on the school level, as it also narrows considerably
the domain of potential gaps in the argument, in
quality as well as in quantity, and enables the students
to direct their reasoning along content lines and not
just logically. In the tradition of Thom (1970),
Freudenthal (1973), and others, we believe that
mathematics instruction should deal with meaningful
statements about meaningful objects. This belief gives
rise to the following description of a concept of rigor
that in our opinion is appropriate for school:

Thesis 1: In school, mathematical reasoning should
explicitly take place as content-related reasoning. With
this qualification, completeness is preserved as a local
requirement. Consequently, in school rigor can only
mean sound reasoning in restricted domains of intended
applications by means of interpreted concepts.

With this specification we deliberately leave wide
scope for what can be understood by "adequate rigor."
In fact, it is always a practical problem to develop an
appropriate orientation for the particular didactical
situation. Moreover, the idea of rigor is subject to his-
torical changes in the paradigms of mathematics itself
as well as of those of mathematics education, and it
depends, of course, on the special topic (e.g., geome-
try, algebra, calculus) and on the students’ stages of
development. At any rate, that idea of rigor which in
our opinion is adequate (not only) for school allows
one to do rigorous mathematics also in the intuitive
mode of reasoning. Examples at different levels, in-
cluding explicit discussions of the problem, are to be
found in Kirsch (1979), Wittmann & Miiller (1988),
and Blum & Kirsch (1991), among others.

Situations continually do occur, however, where the
students cannot finally judge independently the valid-
ity of an argument and the teacher’s professional au-
thority is needed. This discrepancy produces a cogni-
tive asymmetry between the teacher’s and the stu-
dents’ roles. And it has always been an open problem
to reconcile this asymmetry with the pedagogical de-
mand for the principle of autonomous learning.
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We want to stress that within such a framework of
interpreted mathematics there is place as well for
formal representations and formal reasoning: Their
function is to sharpen locally one’s own thinking, and
to serve as a means of reflection. The students, too,
should be given an impression of the logical power of
de-interpreting mathematical objects and of removing
the restrictions from the domains of intended applica-
tions, with which their universes of thinking (should)
largely coincide (e.g., by operating with "meaningless"
letters or by raising apparently absurd counterexam-
ples to propositions that seem to be obviously true).

3. Intuition and learning

3.1 If one tries to explain intuition in a positive way,

the following three aspects prove to be essential:

1. Intuition (as a mode of thinking),

2. Interpretation (activities directed at concepts, and
the results of such activities), and

3. Intention (Objectives, purposes, motives).

These aspects are loosely complementary to those

components of rigor that we discussed in Section 2

(completeness, formalization, global character).

Wherever intuitive thinking takes place, it serves to
bridge logical gaps in a (by narrow standards) gener-
ous manner. Intuitions can be anticipatory in the
course of solving a problem autonomously (e.g.,
finding a proof), as well as affirmative, when working
on a given solution of a problem (e.g., studying a
given proof) (Fischbein, 1987).

In order to unfold, these two aspects of intuition
presuppose a familiar "cognitive space," and this space
is-prepared by the interpretation of the concepts in-
volved. First, we understand interpretation as ascribing
meaning to concepts, primarily by anchoring them in
the real world (in a wide sense). But the phrase "in-
terpretation” also includes the embodiment of con-
cepts in some mathematical situation, where they can
be provided with a new meaning or with some mean-
ing, on the grounds of a new context, and where the
direct reference to the real world (taken literally) can
vanish.

Normally the recourse to the real world takes place
on three levels, and each time some intended applica-
tions play a constituting role: Firstly, when concepis
are created (historically) or developed (practically) in
order to solve some problem (which is the case with
many geometrical concepts in an elementary way; see
Bender & Schreiber, 1985); secondly, in didactical sit-
uations in the classroom, which, by definition, have a
teleological character; and, thirdly, in those real-
world contexts that are designed by curriculum devel-
opers as frameworks for teaching mathematical con-
tents.

The two aspects interpretation and intention are ele-
ments of intuition, and they constitute it at the same
time. It is important to note that they are closely in-
terrelated. If a teacher disregards this interrelation
they often produce unfruitful conflicts for the ste-




dents. For example, the well-known geometrization of
the binomial formula by rectangular areas offers an
appropriate picture, but it may distract from the in-
tentions actually pursued, namely making the struc-
tures of the formula transparent. For these intentions
a visualization like the following may be better:

a + b)’ =a + b + 2ab
a+b+c)f =d+b+c + 2(ab + ac + bc)
a+b+c+d)2=a’+b1+c’+d"+2(ab+ac+ad+bc+bd+cd)

and so forth.
It offers directly insights that immediately refer to
the structure of the expression.

3.2 The obvious discrepancy between the uninter-
preted (abstract) concepts of mathematics and the in-
terpreted (concrete) concepts of humans (in particu-
lar, novices) makes mathematics teaching a difficult
job. Interpreted concepts are embedded in much
richer contexts, which are (didactically) more or less
productive and which are not merely analogous map-
pings of mathematical relations.

How to cope with this richness; how to judge the
students’ conceptions; how to create, develop, or
eliminate them (if necessary) - these issues are usually
not touched upon in the classical, content-oriented
teacher education at the university. But in the disci-
pline of didactics of mathematics, too, considerable
deficits exist concerning these questions.

Plenty of examples and techniques of visualizations
are available. But they are often bound up with the
principle of chopping mathematics lessons into tiny
methodological pieces by which teachers and text-
book authors seek to overcome the primacy of ab-
stract rigor, in which they still believe either overtly
or subliminally (see the textbook critique by Keitel,
Otte, & Seeger, 1980, chap. 7). With this over-meth-
odization, mathematics education runs the risk of
burying the central ideas of the discipline (in the
sense of Schreiber, 1983) and - paradoxically - even of
obstructing learning processes.

3.3 With regard to the present importance of visual
communication by way of plane media like paper,
television screens, computer screens, and so forth, vis-
ualizations (and in particular, geometrical, two-di-
mensional relations) are the prevailing type of inter-
pretations, either actually realized or only prepared
for the students to imagine. They are easily available
(which has been so all along, but the possibilities have
been immensely extended with the help of computer
technology). Real space is part of everyone’s elemen-
tary experience. On the one hand, its structure is rich
enough for generating or representing even complex
mathematical concepts and relations; on the other
hand, it is sufficiently poor to limit extra-mathemati-
cal meaning to the desired scope. But above all, stu-
dents are seemingly able to understand such visualiza-
tions without special prerequisites.
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Apart from visualizations, there are interpretations
in many other fields. The first is elementary physics.
Beyond that, there are many contexts in everyday life
and in vocational life, not to mention technology,
natural sciences, economics, and so forth, that can be
utilized for interpretations (Blum & Torner, 1983,
p. 92). But the more elaborate these situations are,
the more the students, as well as the teacher, have to
provide specific knowledge, and they run the risk of
being distracted from those (mathematical) concepts
they were originally interested in.

It is a widespread fundamental error to assign au-
tomatic intelligibility to pure visualizations (and to
other embodiments in everyday life) because they of-
ten do not require any specific knowledge, even about
geometry. But as is shown by much teaching experi-
ence and by empirical research (e.g., by the investiga-
tions of Schipper, 1982, in the paradigmatic field of
primary school arithmetic):

Thesis 2: Interpretations, even geometrical ones, are
not "pictures speaking by themselves." They can fulfill
their purposes only on the basis of the learners’ active
construction of meaning. In each case, they, as well as
their relations to other interpretations and to the
underlying concepts, have to be learned anew.

Devices meant to facilitate mathematics learning
(namely interpretations) actually seem to impede it at
first (this amazing observation was also made by
Kirsch, 1977). But it is just the additional intellectual
effort needed for the constitution and transfer of
meaning that establishes the basis for the desired suc-
cess. Dealing with the preliminary understanding and
opinions of other participants in the discourse is an-
other essential part of the constitution of meaning,
and at the same time, interpretations, again, are
needed as formats (in the sense of Bruner) for such
discussions (Fischer & Malle, 198S; Krummbheuer,
1989b).

We now want to illustrate our second thesis with
the example of the arithmetic mean, when interpreted
as the supporting point of a beam with several loads
in balance, that is, as the center of gravity. The inter-
pretation of concepts and relations by means of grav-
ity is the basis of a whole class of far-reaching mathe-
matical considerations; for instance: Archimedes’ de-
terminations of areas; the instrumental construction
of the Torricelli point of a triangle (to be found in Li-
etzmann, 1959, p.98); Winter's geometry starting
from the laws of lever (1978); Spiegel’s mean value
abacus, designed for the primary grades (1985); Hei-
denreich’s red wine proof of the regularity of the
hexagon in the middle of a cube (1987), and many
more.

The metaphor of the beam in balance aims at cre-
ating one of several suitable basic conceptions (in the
sense of Bender, 1991) of the arithmetic mean (see
Fig.1). The figure alone, however, does not explain
anything. At first, one has to interpret the real line
(or rather the interval in question) as a beam without

263




ZDM 9271

weight (situated horizontally in the field of gravity,
which is supposed to be homogeneous), and each of
the n numbers aj, i=1,...,n,as a load with unit
weight, fixed to the beam at the position a; (as long as
all numbers are different). In the general case, if the
numbers a; occur with the frequencies k; (k; € N),
then at each position a; have to be fixed k; loads with
unit weight, or one load made up of ki units. This
construction gives rise to a fundamental cognitive ob-
stacle that the students have to overcome: the need to
interpret the original objects (the numbers a;) now as
positions, and the original attributes (the frequencies
k;) now as objects.

163 164t 105 166 161 168 169
T T =T

Fig.1: Balance beam

When the beam is supported at a point, it turns into
a balance. It is immediately clear that there is one and
only one point where the beam is in balance and that
this point is somewhere in the "middle." If the left side
drops, one has to support the beam at a point farther
left to reduce the larger torque on the left and to in-
crease the smaller torque on the right. In fact, one has
to go to the left to the point where the two torques
are equal. These ideas are plausible even without an
elaborate conception of torque and the quantitative
laws of lever.

If one knows these laws, one can formulate the facts
in the following way: Let a be the point of equilib-
rium, and let m be a natural number (1 £ m < n) so
that the positions a; withi <m lie to the left of (or in-
clude) a, and those with i > m lie to its right. Then we
have 3 . k;(@- ;) = Z;, 1 k;(a; - ). This equation
is well known as descnptlon of the equilibrium, and it
now has to be recognized as determining a.

If one has the concepts of negative numbers and
negative lengths, then the equation simplifies to
P k (a a;) = 0, with arbitrary numbering of the a; ’s.
ThlS equatlon is a characterization of the arlthmeuc
mean a (= point of equilibrium) by the fact that the
sum of the deviations from a (= sum of the torques)
vanishes, that is, that the negative deviations exactly
compensate for the positive ones. The contrast to the
mean (linear) deviation Xk, |a a; | is apparent, and
there are close relations to other interpretations of
the arithmetic mean, given, for example, by the ex-
pressions (Z;k )a = Z;ka; and a=Z i/ k])a

3.4 This example shows not only that the demand for
an active construction of meaning is essential for
clarifying the concepts in question but also that, at
the same time, it opens new conceptual fields and
provokes their exploration. Here again one meets the
idea of hermeneutics, which had played an important
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role already at the beginning of the 19th century. It is
no longer simply a normative leading idea of educa-
tional thinking, but a suitable theoretical model for
describing actual learning processes and thereby sup-
porting that idea.

Thesis 3: Not only are interpretations to convey the
allegedly static meanings of mathematical concepts, but
they hold new relations and thus contain the germ for
new, farther-reaching insights. In addition to their
explicatory function, they are provided with an ex-
ploratory character that can be utilized for a her-
meneutic working style in mathematics instruction as
well.

3.5 In the end, visualizations can assume abstract,
symbol-like forms. This possibility allows us to treat
them like symbols, and correspondingly to see sym-
bols as visualizations (one could call this the principle
of nonvisual intuition). To evolve their cognitive
power, both visualizations and symbols have to be in-
terpreted, although they are grounded in epistemol-
ogically different states (Jahnke, 1984). Consider
some examples. Discussing the mathematical concept
of function, Kiesow and Spallek (1983) emphasize the
epistemologic potential of the symbolic mode. Otte
(1983) and Fischer (1984a) indicate the intuitive
power of the graphical arrangement of formulas. The
example we discussed above also supports these ideas.
Furthermore, we want to name matrices representing
linear mappings, probability spaces standing for ras-
dom experiments, and graphs embodying abstract re-
lations of any kind. Not merely are these objects sym-
bolizations, formalizations, or schematizations of
mathematical ideas, but they demand an active cos-
struction of meaning. They contain new structurss
and promote exploratory ways of doing mathematics.
In these cases, it is the trait of being an object tha
provides intuitive accessibility. By concentrating o=
this feature and doing without the sharp contours ant
consistency attached to real-world facts, one can eves
make accessible in a nonvisual way such unruly cos
cepts as infinite point in projective geometry, imag
nary root in the theory of equations, and local rate
change in calculus (Jahnke, 1989). As these terms
suggest, the concepts are to be thought of as extre:
cases situated on, or beyond, the boundary of the
main of "ordinary" cases. Their interpretations can
imagined vaguely as limits of the visualizations of @
dinary cases, and again, they can be used to shed liss
on the ordinary cases from a new perspective.



