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\\-ithir-r a n-iathemtaical theory, a structured set is called hotngeneous, il tts
,prrrts,car.rnot be clistinguished f'ron each other b1'statements of th_at theorl'.

In Euclidean space geometr\.! among all cont,ex surfaces zrnd att-tot-tg all con'rplete

connectecl orientable 2-n-ranifolds §'ith at letrst one regular point, there :rre onll'

three t1.pes of homogeneous objects: the Euclidean plane, sphere and c1'linder'

\vith his famous s.vsrem of axioms, David Hilbert had given in 1899 a

formalistic for,rndation of (Euclidean) geometrv. \Vhile, from a mathematical point

of vierv, this axiomatization u'as fu111,' satisf.ving, Hilbert's formalistic program as

a r.vhole proved ro be unrealizable for logical reasons (Göde1 1931). From the

beginning, there existed a lot of open questions concerning epistemologic matters,

".g. 
uuo.,t the interdependencr, of the mathematical theorl' of Euclidean space on

the one hanc1, and ."ul .pr.", together g'ith its artificial and natural geometrical

phenomena, on thc other hand.

According to I'Ir-rgo Dingler (1933) [1], geometric:rl-forms can be fortr-rcl in the

rczil rvorlcl only becagse man has put them thcre b1- actpalll' making them or, at

lcast, bl.intcrpreting shapres, be thel'man-mncle or not, in a geometriczrl manner.

I31- this mc1ns, shapes in the real sptlce are conceiyecl as phr-sicai zrpprgximations

of pre-existing geometriczrl ic'leas 
"vhich, 

zrgain, root in the dorr-rzrin of hr-rm:rn needs

(irra $"ide sense). Dingler's philosophl'and, in particttlar, the connection bet§'een

Euclidean geometr). ancl real rvorlcl are discr-rssed in detail and are applied to

geometr)' teaching b-v Bender and Schreiber [2] . There exists a short version of

,hi. rror]og.aph ir-r trnglish [3], and an outline of Dingler's philosophy' also in

English, b-v Torretti ['l].
If one analyses carefulh' human pLrrposes connected rvith geornetrical forms in

social contexts, one comes across rvith rules for making real objects in real space,

i.e. for providing those objects rvith some useful or esthetic shape in order to fulfil

those purposes. Epistemologicall-v speaking, these rules constitute a practical

fr,rndan-rent for theoreticll norms s'hich generate ideal concepts in Euclidean

geometr\'.
onc crr.rcial pOint in this process is horv strnctLrres in the ph-vsical rvorlcl are

rclatccl to logicel ones. Pirnl Lorcnzen [5] recognizecl dist.ittgLrislzaäzlity (resp'

Itctnutgeneitt) to be their elcment2lr)'conlmon basis, as fitr:rs the practical making

lncl the thcorctical conceptioll of geomctric forms arc concert-rcd: Ts'o objects (trr'o

parts of zin oblect) can cither be clistingr-rished, or not; that is to sa1'uith respect to
-a 

git,en class o.f »teari.s functioning zrs tottch-stones. A collcction of objects (o1 a

single object) is callecl honrogeneotLs, if the objects (its parts) cannot be distinguished;
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together rvith the class of admissible statements. For example, let S be a Euclidean

cube (i.e. the surface of a full cube): if statements from differential geometr-v are

admissible, S is not homogeneous as its points can be distinguished, e.8., by the

statement',S is flat in z'. If, holvever, only statements from general topology are

admissible, then S is homogeneous (tvhich l,r'e do not prove in this paper).

From now on rve consider onl-v subsets S of Euclidean three-space E (rvith points
.:) and parameter-Jree statements A(2, S) from difJerential geometry, including
arithmetic, elementary geometry, topology, calculus, etc., as admissible statements'

Candidates lor homogeneous sets (in this sense) are E itself; every plane; ever-v

plane s'ith one point removed; every plane with one straight line removed; everv
(unboundecl) circular cylinder; every (unbounded) circuiar cylinder rvith one circle

removed; everr. sphere; every open half-plane; every (r.rnbounded) cone with its
vertex removed; every straight line; every circle; every (regular) helix; everl' set

consisting of the vertices of a regular polygon, including one point sets; the empt-v

set; every union of a plane and all parallel planes having an integer distance from
the first one.

Examples for non-homogeneous sers afe: (full) balls; planes rl'ith tr'vo points

removed; spheres rvith one point removed; cylinders u'ith one straight line
removed; closed half-planes; open disks; cones; non-circular ellipses. Statements

by which points in these sets can be distinguished are respectively: 'z lies on the

boundary of S' , 'z is collinear rvith two points of the boundary of ,S' ,'a has maximal

distance from the boundary of S', '^S has maximal curvature in z', etc.

Obviously, most of these examples and counterexamples are topological sub-

tleties with no equivalent in real-world geometry. There tve have only three-
dimensional solids with their two-dimensional surfaces being smooth almost

everyr,vhere and having no holes. This is our motive to restrict ourselves to subsets

of -E which are rather good-natured: e.g. for convex surfaces (which are defined as

non-empty boundaries of non-empty convex open subsets of E) holds the follor'ving
theorem:

Theorem A. Let B be the three-dimensional Euclidean space, and let ,S c.E,
S + @, be a conaex surlace which is either

(i) bounded or
(ä) connected.

If S is homogeneous, it is either a Euclidean plane, or a Euclidean s1here, of a

Euclidean (unbounded) circular cylinder'

ProoJ. (i) Let ,S be a bounded cont)erc surface. There exists a non-empty
bounded convex open subset F of E whose boundary is ,S, and a uniquely
determined minimal closed full Euclidean ball B (with positive diameter) con-

taining F u 
^S 

with at least one point of ,S lying on the surface Il2 of B. As S is
homogeneous, all of its points lie on 52, that is, ,S c 52. Every inner point of B
must belong to F, because otherwise there would exist boundary points of F in
B\S2, contradicting,S c ,S2. Hence B\S2 : 17 and 52 : ,S. That is, S is a Euclidean

sphere.
(ii) Let S be an unbounded connected conuetc surface. Then S is either a

cylinder, i.e. the product C x L of a plane curve C (its basis) and a straight line L,
or not.
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Let s : c x L be a cylinder. s being convex, c must also be convex' I'e. 1t

is the boundarl' of u .o.u,"* open subset of the plane, namel-v either a bounded

convex curve, a straight line, a pair of parallel straight lines, or an unbounded

curvilinear con\:ex curve'
From the homogeneit_v of s follorvs the homogeneit-v of c, and b1' an argument

as in (i) it follorvs that, if c is bounded, it must be a circle. Hence s is either a

circular cylinder, a pLante, a pair of parallel planes (a case not satisf-ving connected-

ness), or a cl.iinder rvith an unbounded curvilinear convex basis c.
In order to treat that latter case, we use the notion of sphericaLimage n(C) c- Sl

of a plane conve\ curve c, i.e. the set of the endpoints of ali r-rnit normal vectors

of C directed outrvarcls (rvhere peak points can contribute arcs u'ith positive lengths

to n(c)). This notion can be applied also to non-convex plane cttrves, to space

curves, to convex sr,rrfaces ancl to trvo-dimensional manifolds s (rvhose spherical

l."rr", lie in 52), at least u'hen there can be fixed a definite rule rvhich

of th" two orientations of any normal direction has to be taken, as it is the case

rvith convex surfaces and ori.entable manifolds'
If there is such a rule and every point of c (resp. s) has one and onl1'

one normal direction, then there exists the spherical mapping n'.C'-+ 51 (resp'

n:C - 52), rvhich assigns to every point its oriented unit normal' If' for example'

C (resp. ,S) is a manifold and n exists, then a is continuous'

Nou, let S:CxL be a cylinder rvith its basis c being an unbounded

curxilinear contex curve. n(C) c' ^i' i' u non-empt-v (spherically) convex subset of a

half-circle containing an'open subset of 51 and also containing its uniquel-v

determined o.un (spi-rericalj centrai point. That means, there is an admissible

statementl(2, s), namelv'the normal direction in z is the mean one" rvhich is true

for some points of S and ialse fo. others. So S is not homogeneous, in contradiction

to the general assumPtion.
Fina1ly, iet s be an unbounded connected,conL^ex sur-face, but not a cylinder'

According to Stoker [7], in this case the spherical image z(S.) is a (spherically)

convex subset of u f,u'lf'-.phere of 52 co.,tul.,i.,g an open subset of 52' So n(S)

contains its uniquel-v determined (spherical) central point, and the admissible

statement'the normal direction in z is the mean one" again' proves S not to be

homogeneous. n

The restriction in theorem A to conL^ex surfaces seems to be rather strong' one

can drop convexitl,', if one considers maniJolds instead of surfaces" As ever-v convex

.r.,.fu." i. a manifold, theorem A is a direct consequence of theorem B stated belorv'

Nevertheless \1,e treated theorem A separatelv, rvithout including facts about

manifolds, in order to have one more, essentially different, example for the

function of homogeneit-v in proofs'

Theorem B. Let.E be the three-dimensional Ettclidean space, and 1et S c E,

S + A, be a ts'o-dimensional complete manifold rvhich is either

(1) bounded or

liij ,orrrrt.rd antl orientabLe and has at least one regular point (i.e. in *'l-iose

neighbourhoocl it is of ciass C2)'

If s is lrontogeneoLts, it is either a Euclidean pl.ane, or a Euclidean sphere, or a

Euclidean (unbounded) circular cyLinder'
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Remark. 81- the assumptions are excluded some undesirable cases: lines (not

having dimension 2); boundary points not belonging to the manifold like in an

open haif-plane (contradicting completeness, i.e. allorving Cauchy sequences in
S rvith their limits not in S); trvo parallel planes (being not connected). Assuming
the existence of a regular point is no severe restriction, as, for example, in the

case of bounded convex manifolds the non-regular points make up onlv a set of
measr,rre 0.

Proof of theorem B. Let S be homogeneous. As it is complete, it contains its

boundarv points. So the boundary of S is empty, because S has inner points. That
means that everl point of S is an inner one, due to the homogeneity of S.

(i) Let S be a two-dimensi,onal compl.ete bounded manifold. Like in theorem
A(i), there exists a uniquely determined (Eucliclean) sphere ,S2 with S c 52. If the

inclusion S c ,S2 rvould hold, S would have boundary points. So S : ,S2, i'e. S is a

.sphere.

(ii) Let S be a two-di.mensional orientable complete connected manifold witlt a

regular point. We already stated that the boundary of S is empt-v. it also

follows immediately that ecery point of S is regular and that ^9 is global11' of
. ^)class L -.

For every point of S there is defined the Gaussian curvature K, and K
is a continuous function S+R. If K:0 (resp. K+0) somewhere, then I(:0
(resp. li I 0) every r'vhere, '-I( : 0'(resp . ' K + 0') being an admissible statement,

because the equality (resp. inequalitl') on1-v stands for types of local surfaces:
parabolic or planar (resp. eiliptic or h-,-perbolic).

The spherical mapping n (cf. the proof of theorem A(ii)) exists, it is difier-
entiable, and its Jacobian has rank 2 if and onlr.-if K+0.

lf K + 0, then z is a local homeomorphism for every ze,S, and z(S) is an

open subset of ,S2.

If z is surjecti','e, then it is a covering, and as 52 is simply connected, S is even

globally homeomorphic to ,S2. Thus S is bounded and consequently a spltere.

If a would not be a surjective mapping onto ,S2, there rvould be points in n(S)
with maximal distance from the (non-empt.v) boundar-v of z(S) in ,S2, and points
rvith non-maximal distance. So S rvould not be homogeneous.

Nou, let L:0. As ,S is complete and lvithout boundar-v, it is a cylinder C x L
s,ith basis C rvhich needs not to be convex. But C is connected, has no double
points, no end points, and in each of its points z it has a rveil defined curvature A

depending continuouslv on z.
If Ä : 0 somervhere, then A : 0 ever-vrvhere, and S rs a plane. So let A > 0

(er.er_vrvhere).

If there are rc, -y e C rvith x I jy but A(r) : A(y), then A has a local maximum (or
minimr.rm) on C; and, C being homogeneous, A has a local maximum (resp.

minimum) in et'err- point of C. Furthermore, A has a local minimum (resp.

maximum) betu-een any two local maximr-rm (resp. minimum) points; so C has at

least one local minimum (resp. maximr-rm) point, and hence ez;ery point of C is

aiso a local minimum (resp. maximum) point. So A must be locnlll' constant
every',vhere, and, being continuor.rs, it must be constant at all. So C is a cr.rc/e u'ith
radius 1/4.

Nou' let A be strictl.v monotone, hence C not closed. For ever-v a e C the rest

of C (in the direction of increasing A) is contained in a disk r'vith radius llk(z),
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and, being complete, C has a boundarv point' Thus C and' consequently' S are

not homogeneous, in contradiction to the general assumption' Il

Remarks. (i) We did not prove that the plane, the sphere, or the c-vlinder really

are homogeneous. A proof of this fact needs means basica1l1' different from those

used above, namely logic induction on elementary statements'

(ii)Theplanehas.-gotsom"higher.degreeofhomogeneitl-,thanthesphere
and'the circular c_vlinder: It is not onl.v homogeneous itself, but also its complement

consists of tr.vo undistinguishable half-spaces and is obviously homogeneous in the

sense of the definition given above. The complements of the sphere and the

cylinder, on the.o.,trurf', are not homogeneous' This can be seen rvith the help

of the statement l(2, f(Sl:'there is a plane through z completel-v contained in

E\s'
(iii) There are no homogeneous connected lines in E besides the straight line,

the circle and the (regular) helix'
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