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Within a mathemtaical theory, a structured set is called homogeneous, if its
‘parts’ cannot be distinguished from each other by statements of that theory.
In Euclidean space geometry, among all convex surfaces and among all complete
connected orientable 2-manifolds with at least one regular point, there are only
three types of homogeneous objects: the Euclidean plane, sphere and cylinder.

With his famous system of axioms, David Hilbert had given in 1899 a
formalistic foundation of (Euclidean) geometry. While, from a mathematical point
of view, this axiomatization was fully satisfying, Hilbert’s formalistic program as
a whole proved to be unrealizable for logical reasons (Gddel 1931). From the
beginning, there existed a lot of open questions concerning epistemologic matters,
e.g. about the interdependency of the mathematical theory of Euclidean space on
the one hand, and real space, together with its artificial and natural geometrical
phenomena, on the other hand. .

According to Hugo Dingler (1933) [1], geometricaFforms can be found in the
real world only because man has put them there—by actually making them or, at
least, by interpreting shapes, be they man-made or not, in a geometrical manner.
By this means, shapes in the real space are conceived as physical approximations
of pre-existing geometrical ideas which, again, root in the domain of human needs
(in a wide sense). Dingler’s philosophy and, in particular, the connection between
Euclidean geometry and real world are discussed in detail and are applied to
geometry teaching by Bender and Schreiber [2]. There exists a short version of
this monograph in English [3], and an outline of Dingler’s philosophy, also in
English, by Torretti [4].

If one analyses carefully human purposes connected with geometrical forms in
social contexts, one comes across with rules for making real objects in real space,
i.e. for providing those objects with some useful or esthetic shape in order to fulfil
those purposes. Epistemologically speaking, these rules constitute a practical
fundament for theoretical norms which generate ideal concepts in Euclidean
geometry.

One crucial point in this process is how structures in the physical world are
related to logical ones. Paul Lorenzen [5] recognized distinguishability (resp.
homogeneity) to be their elementary common basis, as far as the practical making
and the theoretical conception of geometric forms are concerned: Two objects (two
parts of an object) can either be distinguished, or not; that is to say with respect to
a given class of means functioning as touch-stones. A collection of objects (or a
single object) is called homogeneous, if the objects (its parts) cannot be distinguished;
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otherwise it is called non-homogeneous. The concept of homogeneity is wide spread
in mathematics: topological spaces, factor groups of topological groups, simplicial
complexes, polynomials, linear equations, coordinates can be homogeneous. There
is always an object whose ‘parts’ are all of the same kind with respect to some
given aspect. In this paper, homogeneity is conceived as a very deep (mathematical
and extra-mathematical) idea, a candidate for the list of elements of mathematics
in the sense of Halmos [6]. Its meaning is close to that of symmetry.

The idea of homogeneity applies immediately to mathematical sets with their
elements, and also, for instance, to surfaces, might they be concetved mathe-
matically as subsets of the Euclidean space or as pre-theoretical objects in real
space: A surface is called homogeneous, if its ‘parts’ cannot be distinguished from
each other, e.g. if there are no peaks, no edges, etc. Remember: whether a surface is
homogeneous or not, depends on the type of objects to be considered as its ‘parts’
and on the class of means designated for the test (in the physical world; finger-tips,
microscopes, etc., but not, for instance, a device for discriminating colours; in the
field of logic: mathematical statements). Making a geometric shape in the real world
means working on the surface of some solid, i.e. making it partially homogeneous,
with respect to its purpose. The progenitor of all geometric forms which can be
met with all kinds of utility articles, tools, machines, etc. is the plane.

Correspondingly, Euclidean geometry can be understood as the elementary
theory of homogeneous and non-homogeneous surfaces in the three-dimensional
Euclidean space thus representing an idealization of the space surrounding us.
Apparently, there seem to be only three types of homogeneous surfaces, namely the
sphere, the (unbounded) ctrcular cylinder, and, of course, the plane. The latter one
is excelled among these in that it divides the space into two parts which cannot be
distinguished from each other. As the cylinder and the plane are unbounded, they
cannot be made in the physical world, 1.e. not ‘even approximately. But they can
be imagined as surfaces of solids, and they can be made, at least, in parts.

Are there really no more homogeneous surfaces? In order to give a conclusive
answer, this question is made accessible to a mathematical analysis by exactifying
the notions involved.This formalization of the concept of homogeneity is due to
Lorenzen:

Definition. A set S (together with some structure) is called homogeneous, if for
any two objects x, ¥ and any admissible statement A(z, S) the following conclusion

holds:
(xeS/\yES/\A(x,S))AA(y,S) (1)

That is, one has to look for admissible statements about the set and its elements,
which hold for certain elements and do not hold for others. The set is called
homogeneous, if there are no statements of that kind.

The crucial point in this definition is the concept of admissibility. For example,
let S be a set and p € S some element (i.e. a constant) and A(z, S) the statement
‘g =p’ (where p is used as 2 parameter). Then S cannot be homogeneous, if it
contains more than one element, because for x€ S, x # p there holds 1A4(x, S),
althoughpe S A xeS A A(p, S). If statements like that would be admissible, the
concept of homogeneity would be trivial. In order to avoid this trivial case, from
now only parameter-free statements will be considered.

Of course, homogeneity of a set depends on the structure imposed on that set
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together with the class of admissible statements. For example, let S be a Euclidean
cube (i.e. the surface of a full cube): if statements from differential geometry are
admissible, S is not homogeneous as its points can be distinguished, e.g., by the
statement ‘S is flat in 2’. If, however, only statements from general topology are
admissible, then S is homogeneous (which we do not prove in this paper).

From now on we consider only subsets S of Euclidean three-space E (with points
z) and parameter-free statements A(z, S) from differential geometry, including
arithmetic, elementary geometry, topology, calculus, etc., as admissible statements.

Candidates for homogeneous sets (in this sense) are: E itself; every plane; every
plane with one point removed; every plane with one straight line removed; every
(unbounded) circular cylinder; every (unbounded) circular cylinder with one circle
removed; every sphere; every open half-plane; every (unbounded) cone with its
vertex removed; every straight line; every circle; every (regular) helix; every set
consisting of the vertices of a regular polygon, including one point sets; the empty
set; every union of a plane and all parallel planes having an integer distance from
the first one.

Examples for non-homogeneous sets are: (full) balls; planes with two points
removed; spheres with one point removed; cylinders with one straight line
removed; closed half-planes; open disks; cones; non-circular ellipses. Statements
by which points in these sets can be distinguished are respectively: ‘z lies on the
boundary of S’, ‘z is collinear with two points of the boundary of S”,‘z has maximal
distance from the boundary of S’, ‘S has maximal curvature in 2’, etc.

Obviously, most of these examples and counterexamples are topological sub-
tleties with no equivalent in real-world geometry. There we have only three-
dimensional solids with their two-dimensional surfaces being smooth almost
everywhere and having no holes. This is our metive to restrict ourselves to subsets
of E which are rather good-natured: e.g. for convex surfaces (which are defined as
non-empty boundaries of non-empty convex open subsets of E) holds the following
theorem:

Theorem A. Let E be the three-dimensional Euclidean space, and let S < E,
S # &, be a convex surface which is either

(i) bounded or
(ii) connected.

If S is homogeneous, it is either a Euclidean plane, or a Euclidean sphere, or a
Euclidean (unbounded) circular cylinder.

Proof. (i) Let S be a bounded convex surface. There exists a non-empty
bounded convex open subset F of E whose boundary is S, and a uniquely
determined minimal closed full Euclidean ball B (with positive diameter) con-
taining F U S with at least one point of S lying on the surface S? of B. As S is
homogeneous, all of its points lie on S2, that is, S < S2. Every inner point of B
must belong to F, because otherwise there would exist boundary points of F in
B\S?, contradicting S € S?. Hence B\S? = Fand S? = S. That s, S is a Euclidean
sphere.

(ii) Let S be an unbounded connected convex surface. Then S is either a
cylinder, i.e. the product C x L of a plane curve C (its basis) and a straight line L,
or not.
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Let S = C x L be a cylinder. S being convex, C must also be convex, i.e. it
is the boundary of a convex open subset of the plane, namely either a bounded
convex curve, a straight line, a pair of parallel straight lines, or an unbounded
curvilinear convex curve.

From the homogeneity of S follows the homogeneity of C, and by an argument
as in (i) it follows that, if C is bounded, it must be a circle. Hence S is either a
circular cylinder, a plane, a pair of parallel planes (a case not satisfying connected-
ness), or a cylinder with an unbounded curvilinear convex basis C.

In order to treat that latter case, we use the notion of spherical image n(C) < S
of a plane convex curve C, i.e. the set of the endpoints of all unit normal vectors
of C directed outwards (where peak points can contribute arcs with positive lengths
to n(C)). This notion can be applied also to non-convex plane curves, to space
curves, to convex surfaces and to two-dimensional manifolds S (whose spherical
images lie 1n S?), at least when there can be fixed a definite rule which
of the two orientations of any normal direction has to be taken, as it is the case
with convex surfaces and orientable manifolds.

If there is such a rule and every point of C (resp. S) has one and only
one normal direction, then there exists the spherical mapping n: C — St (resp.
n: C —» S?), which assigns to every point its oriented unit normal. If, for example,
C (resp. S) is a manifold and 7 exists, then 7 is continuous.

Now let S=C x L be a cylinder with its basis C being an unbounded
curvilinear convex curve. n(C) < S' is a non-empty (spherically) convex subset of a
half-circle containing an open subset of S! and also containing its uniquely
determined own (spherical) central point. That means, there is an admissible
statement 4(z, S), namely ‘the normal direction in z is the mean one’, which 1s true
for some points of S and false for others. So S is not homogeneous, in contradiction
to the general assumption.

Finally, let S be an unbounded connected.convex surface, but not a cylinder.
According to Stoker [7], in this case the spherical image n(S) is a (spherically)
convex subset of a half-sphere of S? containing an open subset of S2. So n(S)
contains its uniquely determined (spherical) central point, and the admissible
statement ‘the normal direction in 2 is the mean one’, again, proves S not to be
homogeneous. O

The restriction in theorem A to convex surfaces seems to be rather strong. One
can drop convexity, if one considers manifolds instead of surfaces. As every convex
surface is a manifold, theorem A is a direct consequence of theorem B stated below.
Nevertheless we treated theorem A separately, without including facts about
manifolds, in order to have one more, essentially different, example for the
function of homogeneity in proofs.

Theorem B. Let E be the three-dimensional Euclidean space, and let S < E,
S # (&, be a two-dimensional complete manifold which is either

(i) bounded or
(ii) connected and orientable and has at least one regular point (i.e. in whose
neighbourhood it is of class C?).

If S is homogeneous, it is either a Euclidean plane, or a Euclidean sphere, or a
Euclidean (unbounded) circular cylinder.
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Remark. By the assumptions are excluded some undesirable cases: lines (not
having dimension 2); boundary points not belonging to the manifold like in an
open half-plane (contradicting completeness, i.e. allowing Cauchy sequences in
S with their limits not in S); two parallel planes (being not connected). Assuming
the existence of a regular point is no severe restriction, as, for example, in the
case of bounded convex manifolds the non-regular points make up only a set of
measure 0.

Proof of theorem B. Let S be homogeneous. As it is complete, it contains its
boundary points. So the boundary of S is empty, because S has inner points. That
means that every point of S is an inner one, due to the homogeneity of S.

(i) Let S be a two-dimensional complete bounded manifold. Like in theorem
A(1), there exists a uniquely determined (Euclidean) sphere S? with S < S2. If the
inclusion S = S? would hold, S would have boundary points. So S = S?,i.e. Sis a
sphere.

(ii) Let S be a two-dimensional orientable complete connected manifold with a
regular point. We already stated that the boundary of S is empty. it also
follows immediately that every point of S is regular and that S is globally of
class C2.

For every point of S there is defined the Gaussian curvature K, and K
is a continuous function S — R. If K =0 (resp. K # 0) somewhere, then K =0
(resp. K # 0) every where, ‘K = 0’(resp. ‘K # 0’) being an admissible statement,
because the equality (resp. inequality) only stands for types of local surfaces:
parabolic or planar (resp. elliptic or hyperbolic).

The spherical mapping 7 (cf. the proof of theorem A(ii)) exists, it is differ-
entiable, and its Jacobian has rank 2 if and only-if K= 0.

If K #0, then n is a local homeomorphism for every z €S, and n(S) is an
open subset of S2.

If n is surjective, then it is a covering, and as S? is simply connected, S is even
globally homeomorphic to S2. Thus S is bounded and consequently a sphere.

If 7 would not be a surjective mapping onto S?, there would be points in n(S)
with maximal distance from the (non-empty) boundary of n(S) in S2, and points
with non-maximal distance. So S would not be homogeneous.

Now let K = 0. As S is complete and without boundary, it is a cylinder C x L
with basis C which needs not to be convex. But C is connected, has no double
points, no end points, and in each of its points z it has a well defined curvature &
depending continuously on z.

If k=0 somewhere, then k= 0 everywhere, and S is a plane. So let k>0
(everywhere).

If there are x, y € C with x # y but k(x) = k(y), then k has a local maximum (or
minimum) on C; and, C being homogeneous, k& has a local maximum (resp.
minimum) in every point of C. Furthermore, k has a local minimum (resp.
maximum) between any two local maximum (resp. minimum) points; so C has at
least one local minimum (resp. maximum) point, and hence every point of C is
also a local minimum (resp. maximum) point. So & must be locally constant
everywhere, and, being continuous, it must be constant at all. So C is a circle with
radius 1/k.

Now let k& be strictly monotone, hence C not closed. For every z € C the rest
of C (in the direction of increasing k) is contained in a disk with radius 1/k(z),
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and, being complete, C has a boundary point. Thus C and, consequently, S are
not homogeneous, in contradiction to the general assumption. O

Remarks. (1) We did not prove that the plane, the sphere, or the cylinder really
are homogeneous. A proof of this fact needs means basically different from those
used above, namely logic induction on elementary statements.

(ii) The plane has got some higher ‘degree of homogeneity’ than the sphere
and the circular cylinder: It is not only homogeneous itself, but also its complement
consists of two undistinguishable half-spaces and is obviously homogeneous in the
sense of the definition given above. The complements of the sphere and the
cylinder, on the contrary, are not homogeneous. This can be seen with the help
of the statement A(z, E\S) = ‘there is a plane through = completely contained in
E\S’.

(iii) There are no homogeneous connected lines in E besides the straight line,
the circle and the (regular) helix.
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