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Basic Ways of Imagining and Understanding Mathematical Concepts

1. Despite immense progress in the field of mathematics didactics there are still

many educators as well as teachers who adhere to a rather narrow picture of their

subject, namely consisting on the whole of abstract relations between abstract ob-

jects and some calculation. For them, intuitive, vivid, enactive or application orient-

ed ways of doing mathematics do not belong to true mathematics, but are mere ap-

proaches. The advantage of this picture is that the contents can be identified exactly,

and can easily be made accessible to presentations in textbooks, as well as to empiri-

car resear.n ä, how students handle them, or to (so called) intelligent tutorial sys-

tems.

Yet, this picture is not a suitable foundation for teaching and learning mathematics

(neither for doing or applying mathematics), as in it the category of meaning is

ignored and hence the constitution of meaning is not a matter of education' - But

in every thinking or learning process the individual assigns some meaning to some

notion, situation or circumstances, and teachers, in particular mathematics teachers,

have to take into account these processes of assignment'

closery connected to the difficurties in recognizing and controlling the students'

learning processes is the problem of matching concepts in the realms of mathema-

tics, epistemology and psychology (which I will cau'mathematical', 'epistemologi-

cal' and 'pry.t oiogical concepts' respectively). - The conception of Basic Ways of

Imagining and understanding Mathematical concepts (BIU) offers a didactical

frame fbr this matching problem. In German mathematics education this conception

has a rong tradition. Rudolf vom Hofe (1995) investigated its history and found a lot

of variants in the last 200 years, most of them tackling the matching problem by de-

signing ideal normative mathematical concepts in the epistemological mode (vom

Hofe names them "basic ideas") serving as models for the students' formation of

concepts in the cognitive mode (which he names "individual images")'

It seemed to be naturar to all those educators to found their conceptions on an ana-

lysis of subject matter and to include their rich teaching experience as an empirical

background. Thus they were much closer to their students than many mathematics

professors at the universities or teachers at the Gymnasiums (in former times with

the top ro ro of each age-group) who taught (and often stiil do teach) mathematics

- maybe in an elementarized, but still - in a rarely modified manner as a pure
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discipline. On the other hand those educators, too, did often not care for what really

happens in the students' brains, and, f-urthermore, in spite of their good ideas their

efforts had only little success.

But one must admit that only since the 1970s there has been reasonable technology

for thoroughly studying classroom actions, namely video recordings. Of course,

even with this technology one does still not know how cognition 'really' works.

Neither the mathematical formalization of thinking processes. nor the definition of

man as an information processing being similar to a computer (Simon 1969)

brought about much new insight in human cognition. But based on the talents of vi-

deo technology we learned a lot about communicative and social interaction in the

classroom, in particular, how mathematical meaning is implicitly and explicitly ne-

gotiated between the participants (cf. Bishop 1985).

Due to the constructivist and connectionist roots of their theories, some cognitive

scientists underestimate, ignore or deny a dominant inf-luence of the teacher and,

consequently, of the subject matter on the students' learning processes. - In fact,

during painstaking examinations of video taped and transcribed micro situations

middle and long term effects can easily get out of sight. If one concentrates on so-

cial and communicational characteristics of a situation, the subject matter tends to

play only a minor role. And comparing students' deviating verbal and non-verbal

manifestations with teachers' obvious original intentions may support severe doubts

in the efficacy (or even possibility) of extraneously..determined learning processes.

- These tendencies are supported by the researchers' aim to overcome the old the-

ories because of their meager success.

On the other hand careful re-analyses of classroom situations under subject matter

aspects often lead to plausible recasts or improvements (as well as to verifications)

of former interpretations based on interaction-theoretical grounds. So to me it

sounds unreasonable to exclude these aspects when exploring such a situation. As I

pointed out before, in German mathematics didactics, for a lot of mathematical con-

cepts there are well known elaborated teaching routines. Whether a teacher relies

on such a routine or not: From the words, diagrams etc. that she or he uses, from

her or his rejection or acceptance of students' answers etc., the observer frequently

can disclose the teacher's own way of imagining and understanding the mathemati-

cal concept in question. (Throughout this talk, the r-rotion of mathematical concept

includes theorems, mathematical structures, procedures etc.) - Sometimes, the tea-

cher's own imagery and understandings seem to be inadequate, or at least the tea-

cher evokes inadequate imagery and understandings among the students. - These

problems can be tackled didactically with the help of the conception of BIU, which
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is meant to be a theoretical and practical frame for a normative' descriptive and

constructive treatment of concept formation processes'

A radical constructivist would argue that there is no adequacy or inadequacy of

imagery and understandings. Here we have reached a point of discourse where there

might be no agreement. For me, aclequacy of concepts or adequacy of imagery and

understandings is a useful and important didactical category. of course' adequacy

cannot be proved rike a mathematicar theorem. whether a student's concept is ad-

equate even cannot be stated uniquely, neither in the prescriptive' nor in the de-

scriptive mode. But there or" 
',t'ong 

r'int' in either mode: If a student's statements

about, and actions with a mathematical concept sound plausible and seem to be suc-

cessful to his own common sense as well as to experts' we would concede some ad-

equacy (tor more details cf' E'J' Davis 1978)'

From a didactical point of view, it is not crucial whether teachers actually 'teach'

their students or whether they only stimurate their students' concept formation pro-

cesses. Good'teaching' always tontuin' stimulating the students' own acitivities'

2.Bythe adjective 
,basic, there are expressed several essential characteristics of the

concePtion of BIU:

(1)ItincludesatendencyofepistemologicalhomogeneoLtsnessandobligcttionhow
mathematical concepts should be understood' 

-

(2)Psychologically,p"uki,,g,itindicatesthatstudents,individualconcepts
normally are, and in the teaching processes the epistemological concepts should

be, anchored inthe students' worlds o'f experience'

(3)withrespecttosubjectmatteritstressestheimportanceof.fundamentalideas
(in the sense of Halmos's elements, 1981, or SÄreiber's universal ideas' 1983)

guiding the stucly of any mathematical discipline'

Epistemological homogeneousness:This tendency seems to be in contradiction with

modern pedagogical and didactical paradigms like "the students should create their

own mathematics", or "the students have to find their individual ways in solving

mathematical problems,, etc. ln fact, teaching does not mean telling (Campbell &

Dawson 1995), but it means stimulating students' cognitive activities' negotiating

mathematical meaning in the classroom etc'

Butthiswayofconceivingtheteaching-learninggroc;s-sd::::".entailanyobliga-
tion for the teacher to tolerate or even to support inadequate individual concepts, on

the contrary: it makes the teacher's task much more difficult' she or he must be

providedwithagoodtheoreticalanclpracticalcompetencyinnrathematics,mathe-

(
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matics applications, epistemology, pedagogy, psychology, social sciences etc., in or-

der to

- develop her or his cwn view of the epistemological kernel (which must not be

identified with a rnathematical definition) of some mathematical concept which

the students shall acquire,

- perceive the students' actual individual concepts as truly as possible and to judge

their adequacY,

- help the students, if necessary, to improve or to correct their individual concepts

into adequate ones near the epistemological kernel,

- possibly learn by the students and improve her or his own individual concepts.

This task imparts a predominant role in the teaching-learning process to the tea-

cher's own imagery and understandings and to their transposition into didactical ac-

tion. For example, if for the calculation of the number Tc a circle is approximated

by a sequence of polygons and the teacher uses a phrase like "in this sequence the

polygons have more and more vertices, and finally they turn into the circle", the

students' formation of an adequate concept of limit is obstructed.

The epistemological kernel of a concept corresponds to a commonly shared socio-

psychological kernel. Such a socially constituted kernel is an important prerequisite

for the construction of individual argumentation and its introduction again into

classroom interaction (cf. Krummheuer 1989). --It is obvious that this commonly

shared kernel should be as extensive as possible, which, again, gives the teacher a

central position in the teaching-learning process'

Anchoring mathematical concepts in the students' worlds of experience: Even work-

ing mathematicians need some real world frame for doing mathematics ("we consi-

cler...", "if x runs through the real line ..." etc.; cf. Kaput, 1919, and many others)'

All the more students need such frames so that they can constitute meaning with the

subject matter they are about to learn (Davis & McKnight, 1980, Johnson, 198J,

Fischbein ,1987,1989, etc.). As such frames do not belong to the epistemological

concepts, the teacher is rather free when constructing real world situations where

basic imagery and understandings can be unfolded.

These situations need not be absolutely realistic, on the contrary, by alienating them

with the help of fairy-tale traits and concentrating on the essence they can be turned

into metaphors with their explanatory power. One can take human beings, animals,

things, which are more or less anthropomorphized and more or less mathematized'

These participants of the situation have to act somehow, following some arbitrary

rules, pursuing some arbitrary plans, obeying arbitrarily physical and other natural

laws, or not.
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Let us take as an example the arithmetical mean ; of n (positive) numbers zt ,

z2 , ..., an , defined as t**-t and characterizing this collection of numbers.

The situation can be visualized on the number line, where the numbers are spread

over a certain section. One looks for the center of this section, taking into account

the distribution of the numbers.

This visualization does not really fit the definition. In fact, the definition is connect-

ed to some other imagery: We think of n people with the n numbers as their re-

spective body-heights. We build a tower by puttingjh: ,. persons, one on another'

Tien we look for one more person whose height ; is given by the following

conditions: If we build a second tower with n copies of this person, it has to have

exactly the same height as the first tower. This leäds to the equation n'ä = ä1 * ä2 *

... * än , which can easily be transformed into the above definition by dividing both

sides by n . In our visualization this means dissecting the first tower into n equal

parts. - Of course, one needs not such drastic illustrations; arrows on the number

line do as well.

But there seems to remain some missing understanding: By adding those n num-

bers one gets far away from that section where these numbers are located. - Are

we sure that by dividing the sum by n we return to that section and arrive at a

number which can reasonably be called mean value of the original numbers? The

same question arises, when we transform the equatio-n into ä = l'u, * l'u, + "' +

*.u" , where ; is the weighed sum of the a1 : Each of the n persons gives * of

her or his height, and the average person is constructed with these n parts' With

these small numbers, again, one leaves the original section, now in the direction of

0 , and, again, it is questionable whether summing up these numbers brings us back
t

into its centre.

Let us take into consideration another fundamental attribute of the arithmetical

mean, i.e. its compensatory character: Some of the numbers are larger, others are

smaller than their arithmetical mean, to be more exact: The arithmetical mean is de-

terminated by the condition that the sum of the positive deviations is just compensa-

ted by the sum of the negative deviations, this determination being appropriately

visualized on the cover of the journal "mathematik lehren" (fig' 1)' - For the

equation this means to subtract on both sicles n titnes ; and to assign to each

number ä1 itsowncopyof a . We get 0= (ar- i) + (a:-ä I + "' + (an- i) with

the disadvantage that there are involved neagtive numbers: The sum of all (orient-

ed) differences is 0 . In order to avoid negative numbers one can put the given

numbers in their natural order and one finds an index number m , for which the

iotto*irg holds: For k<m we have ar<i , and fbr k>rn we have äs) a



6

And now we can avoid negative numbers: (ä-a,) + (;-az) + ... + ( a -a-) -
(än.+r-ä) + (a,n*z-ä) + ... + (an-T)

This version of the equation is still unsatisfactory as it uses the value of the arithme-

tical mean which is usually not known from the beginning but shall be calculated-

This problem can be tackled with the help of an algorithm, which was prepared fbr

the primary school by rry colleague Hartmut Spiegel (1985). From now on I as-

sume that the numbers ä1 are whole numbers; but the algorithm can easily be ge-

neralized. - Reduce the largest number by 1 , and, at the same time, increase the

smallest number by 1 . This double action results in a new collection of numbers

which differs from the old one by two entries and which has the same arithmetical

mean. It has to be repeated with this new collection, and so on. (If there is more

than one maximal or minimal number, one chooses one out of them for the reduc-

tion respectively for the enlargement.) With each step the sums of the positive and

of the absolute negative deviations from the (not yet known) arithmetical mean are

decreased, and at the same time it is clear that the arithmetical mean lies between

the smallest and the largest number (fig. 2a).

If one wants to work with this algorithm in the primary class room, body-heights

are not appropriate as they belong to a continuous number domain. Rather one has

to choose domains with natural units like the heights of Lego block towers, amounts

of money, or numbers of mistakes in a test. Spiegel's central example had the ad-

vantage of representing a piece of meaningful applied mathematics: How many mat-

ches are there in a box in the average? In this context the algorithm means at each

step: to order the boxes according to how many matches they contain and then to

take one match out of the fullest box and put it into the emptiest one'

The algorithm ends, when all boxes contain the same number of rnatches. Then the

arithmetical mean is found, as it has the following meaning, not only in the primary

school: If we would collect all matches from all boxes and then distribute them

evenly on all boxes, how many matches would be in each box? - 
Of course, it can

also happen that the algorithm reaches a stage, where there remain rn'o kinds of bo-

xes, one kind with a maximal number of matches and one kind with a minimal num-

ber of matches, the maximum and the minimum diff'ering just by one match' If we

would then continue the algorithm, nothing would change, as transterring one

match from a'maximal'box to a'minimal' one would only turn this maximal box

into a minimal one and vice versa. - So this is a second kind of final state. Here the

arithmetical mean is not a whole number, but lies between the two numbers which

are still involved. From the ratio of the two fiequencies one can tell whether the

arithmetical mean lies nearer to the one or to the other number. - As long as there

L
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are numbers (of matches in boxes) which difTer by more than I , the algorithm

can and must be continued.

Spiegel's example which he realized with ten years old students had roughly the fol-

lowing diagramme (fig. 2b). If one starts working immediately in the iconic mode

of representation, one tends to move one complete box fiom the right column to the

left column. This is a severe mistake, as there are mingled two object levels and two

kinds of frequencies. One treats each column as one box and its height as the num-

ber of matches in it. But, in fact, there are 40 boxes which are ordered according to

the number of matches they contain, and each column consists of all boxes with the

same number of matche This mistake is one of the most favourite ones to be

made in statistics, and it regularly blocks the learning of this discipline from the be-

ginning.

Of course, the activities have to start (and to remain for a long time) in the enactive

mode: The boxes have to be ordered and to be put together to (horizontal) columns

actually. Then one box on the right column and one on the left column have to be

opened, one match has to be removed fiom that right box and to be put into the left

one, and then the two boxes have to be moved to their respectively next columns.

This example also shows the problems of genuine mathematics application in school:

The algorithm is very time expensive (in this small example it needs 32 steps), and

it puts a great strain on the students' perseverance.

So far, I presented fbur or five ways of imagining and understanding the concept of

arithmetical mean. I think, the students should make them all their own in the

course of their school time, and they should relate them to each other and to other

concepts (e.g. the mean deviation). - 
It should become clear on the one hand that

even a seemingly static concept like the arithmetical mean is basically grounded on

actions, and on the other hand that.symbolic and fbrmal mathematics also plays a

constituent part in relating different ways of imagining and understanding a mathe-

matical concept to each other.

Fundarnental icleas for mathematical disciplines (in an epistemological and psycho-

logical sense): Basic imagery and understandings are not only meant as a peg on

which to hang some mathematical content, but they shall lay the foundations fbr

further meaningtul interpretations of concepts within a mathernatical discipline.

3. The notions of imagery and understanding stand for two fundamental psycholo-

gical constructs. There exists an extensive literature about them. Different authors

have different definitions, most of them not very concise. A lot of contemporary

L
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cognitive scientists disregard these two constructs anyway, as they escape hard em-

pirical research and do not fit a computer related view of intelligence. - But it is
just these behaviouristically - shortcomings, their vagueness and flexibili-
ty, which turn these constructs into suitable means fbr analyzing (and promoting)

such complex didactical objects like human teaching-learning processes.

Imagery can be grasped as: mental, often visual (but also auditory, olfäctory, tac-

tile, gustatory, and kinesthetic; cf. Sheehan 1972) representations of some object,

situation, action etc. having their sensory foundations in the long term memory and

being activated in conscious processes. A person activating some imagery has alrea-

dy some meaning, some intentions in mind and organizes these processes according

to these intentions (Bosshardt 1981). 
-Imagery 

is closely related to intuitions, but

its objects are more concrete, and meaning plays a more important role.

The objects of imagery (and understandings) can be given in different modes,

namely analogous or propositional. I don't want to resume the cognitive scientists'

quarrel in the 1970s about the interrelations between these two modes or about their

separate existence as ways of thinking. In my opinion both are valuable means for
analyzing imagery and understandings in teaching-learning processes.

Apparently, imagery is more closely connected to the analogous mode, and under-

standings are more closely connected to the propositional mode of thinking. But it is
difficult for a person to activate some imagery without propositional elements, in
particular in didactical situations, as in these situatiöns verbalization is the funda-

mental means fbr a participant to communicate either with others or with her- or

himself (this communication with oneself being a transposition of a social situation

to one's mind which is typical for teaching-learning processes). On the other hand,

there can be no process of understanding without recurring to any plausible image-

ry and to analogous elements.

Obviously, thinking in the analogous mode can be stimulated by analogous means

like pictures, diagrams etc. (with a lot of limitations; cf. Presmeg 1994), and the

propositional mode can rather be stimulated by propositional means like verbal

communication. In the age of paper and pencil and of books, analogously given ob-

jects fiequently are of a visual, static nature, and the learners have to undertake

some efTort to make these 'objects' plausible, meaningful, vivid imagery matching

their worlds of experience. In the nearest future the use of multi-media in schools

(in the western world) possibly will relieve the students from these efforts.

Whether multi-media will be conducive to the students' learning processes, is not

yet settled: The students' inclinations and abilities to undertake efTorts to generate

mathematical concepts could be undermined. - This problem is complementary to
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the following classical one, related to the use of visualizations (diagrams, icons

etc.): Among many educators there exists the naive belief that visualizations do fa-

cilitate the students' learning processes automatically. But as, for example, Schipper

(1982) showed with pr;:nary graders, many visualizations are not self-explanatory

at all, but they are subject matter which has to be acquired for its own sake on the

one hand. and in relation to the visualized contents on the other hand. - As a mat-

ter of course, visualizations can be successful didactical means, but not because they

would reduce necessary effort, but because they demand more effort and give hints

how to direct and structure this surplus effort and thus make it effective.

There are didactical situations, as well as mathematical concepts, as well as students,

tor which resp. for whom one of both modes is more suitable. For teaching and

learning mathematics it is important that there has to be a permanent transformation

between the two modes. Maybe geometry can be treated predominantly in the ana-

logous mode, and algebra in the propositional mode, maybe the teacher is even able

to take into consideration the preferences of single students. But on principle, both

modes must be present.

Taking into account the wide spread propositional appearance of rnathematics teach-

ing, in particular on the secondary school level, there is need of an increased use of

the analogous mode all over the world. - By stressing the students' anchoring of

their individual concepts in their worlds of experience, the conception of BIU lays

some accent on the analogous mode, as a prophLylac-tic counterweight to the prepon-

derance of the propositional mode in the upper mathematical curriculum.

The psychological construct of understanding is still more complicated and non-uni-

form. For didactical reasons the following aspects are reievant:

(1) One can understand people, their actions, situations, the motives or the aims of

the participants (practical knowledge of human nature, common sense).

(2) One can understand utterances medially and .formally (e.g., if they are made

loud enough and in a language one knows).

(3) One can understand thte Corüertt of a message made by someone (understand

what this some one means by a certain communication, text, phrase, word, sym-

bol, drawing etc.).

(4) One can understand technical matters, working principles of gadgets, mathema-

tical structures, procedures etc. (expertise).

At first glance, aspect (4) seems to be most suitable tbr the conception of BIU. But

it becornes immediately clear that each of these aspects is important fbr the learning

L
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of mathematics and has to play an essential role in the conception, in particular (3).

This aspect is a classical psychological paradigm, but the general opinion about it
has changed: Today, one does not believe anymore that it consists just of finding
some objective meaning of given signs, but that the receiver of a message tends to

and has to embed the message in some context and, in doing so, tries to reconstruct

its meaning (cf. Engelkamp 1984), thus getting near aspect (1).

It goes without saying that there is no understanding (3) without (2): the sender and

the receiver of a message have to have a common language, not only in a direct, but

also in a figurative sense: As Clark & Carlson (1981) put it, there has to be a "com-

mon ground", which, again, refers to aspect (l).- In school teaching, and in parti-

cular in mathematics teaching, the common ground of teachers and students is often

rather thin, if existing at all. - But, extending the common ground does not only
mean that the students have to be better instructed so that they make the teachers

ground their own. Rather the teacher must engage in the students, attach importance

to them (and not only to the subject matter), understand them as human beings

(again, aspect (l)), and try to reconstruct or to anticipate their ways of thinking.

By fbllowing the conception of BIU, to some extent the teacher is fbrced to do so,

and furthermore, her or his expertise can be promoted. But this way of teaching

and learning demands much more effort for both parts, in comparison with the usu-

al way, where teachers, in good harmony with the students, are satisfied with stu-

dents' instrumental understanding (in the sense of t]re late Richard Skemp 1976).

In the following example, the teacher (resp. the researcher) did not quite under-

stand the student's way of thinking. It was originally described by Malle (1988) and

re-analyzed by vom Hofe (1996): In order to develop the concept of negative num-

bers, Ingo, the student, was given the following situation: "In the evening the tem-

perature is 5 degrees (Celsius) below zero. During the night a warm wind moves

inland, and the temperature rises by 12 degrees. - What is the temperature next

morning?" Ingo answers correctly: "7 degrees", but in the dialogue with the inter-

viewer, he shows inadequate imagery. When he shall sketch the situation, he asks

whether he must draw three thermometers, and later he explains that at midnight

the temperature went up to +72 degrees, and in the morning it dropped to +7 de-

-srees 
(fig. 3).

Malle gives well known and, of course, correct explanations fbr Ingo's obvious in-

adequate dealing with the situation: Ingo is not able to identify the elements which

are important for solving the problem, but invents additional information and tells

fairy tales, and he does not differ between the starting and the final state (i.e. the
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starting and final temperature, represented on the thermometer) on the one hand

and the change between the states (the rise of the temperature) on the other hand.

In his careful re-analysis. vom Hofe shows that the problem lies in Ingo's way of

imagining and understanding the physical situation, which is no suitable basis for

the formation of the mathematical concept. Whereas the interviewer expects Ingo to

focus on the changes of the mercury column (as a direct model of the number line),

Ingo imagines two masses of air, a cold and a warm one, which mix and result in a

third mass with average temperature. Therefore he needs three thermometers, and

in the night the temperature does not rise by 12 degrees, but Ltp to 12 degtees, and

goes down again in the morning. The idea of mixing air masses is, physically speak-

ing, not at all inept, but it merely does not fit the mathematics that the interviewer

has in his mind. For Ingo, there are two states of temperature which result in a

third one, the weighed arithmetical mean, and not one state which changes into an-

other.

Granted that every human being tends continually to conceive, or to make and to

keep her or his environment meaningful and sensible, one must admit that usual ma-

thematics teaching in large parts has a contra-productive efTect. - The strive fbr
,,constance of meaning" (Hörmann, 1916) is in my opinion a characteristic trait of

humans, which, for example, is largely ignored in Piaget's biologistic theory of

equilibration.

Mathematics teaching, too, is such an environment which humans who are in touch

with it try to make meaningful and sensible for themselves. As an extreme example,

(in a famous French movie from 1984) in a physics lesson in Paris the absent-mind-

ed student from Algeria understands "le thd au haröme d'Archimöde", when he

hears "le th6oröme d'Archimöde" (which means: "tea time in Archimedes's harem"

instead of "the theorem of Archimedes"). Even if we omit such extreme cases, it

still seems to be rather normal all over the world that students tend to develop their

own non-conformistic imagery and understandings, which, however, often remain

implicit.

Fischbein (lggg) calls them "tacit models" and characterizes them as simple, con-

Crete, practical, behavioural, robust, autonomous and narrowing' Their robustness

results from their simplicity, their anchoring in the students\ worlds of experience,

and their short term success with convenient applications (see the example of Ingo).

Inadequate tacit models come into being because of lack of adequate basic imagery

and understandings, which in their turn would also be concrete, practical, etc', suc-

cessful and therefore robust, and not narrowing, but capable of expansion'

L
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So the conception of BIU includes the strategy of occupying the students' frames

with adequate basic imagery and understandings from the beginning, i.e. to give

them the possibility and to enable them to develop such imagery and understandings

by themselves.

Nevertheless, students will still generate a lot of inadequate tacit models, and tea-

chers must be able to recognize them and to help the students to settle them. In this,
again, the teachers can be supported by the theoretical and practical frame of the

conception of BIU, thus using the constructive aspect of the conception (as vom
Hofe, 1995, puts it).

Fischbein (1989), like many other educators and cognitive scientists, recommends

that the students should undertake meta-cognitive analyses in order to discover and

eliminate the defects in their frames. - I couldn't find evidence in the literature
that students would be able to successfully analyze their own (wrong) thinking with-
out massive interventions by the teacher or by some interviewer. According to my
own experience with young people in all grades, they are overstrained if they shall

reflect reflexively about their own reflections.

In fact, in many classroom situations there can be found actions of understanding on

a meta-level; for example, if students recall how they solved a certain problern, or
if they try to frnd out the tea§,hsr's intestir.{L., iurtead,of ffi-- t-+fF+h
contents of her or his statements. But" in gener-al, $is kind of rderstaufng (aspect

(1)) is not explicitly reflected by the students.

One essential trait of every didactical situation is (or should bel that the particlprnts
strive for understanding the contents of some message -9iven. verballv or non-\ er-

bally, by the teacher, students, the textbook etc. (aspect (3)). rvith the underiving
aim that the students shall acquire expertise (aspect (a)). Whereas aspect (3) stresses

the processes of understanding, aspect (4) stands fbr the products of these processes.

The products are not only results, but at the same time they are starting points for
new processes, and each understanding process starls on the ground of some alreadv

existing understanding.

ln mathematics teaching, both aspects of understanding ((3) and (4)) deal with the

same objects: the messages, seen ideally, deal with mathematical concepts, about

which the students shall acquire expertise. - In the humanities and in the social sci-

ences, as well as (in an indirect way) in mathematics, this expertise again often re-

fers to social situations (in a wide sense) and thus is in parts identical with aspect

(1). 
- So, finally, in normal teaching-learning processes all the aspects of under-

standing discussed here belong together and are essential for success.

a

L
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In my view, there is no understanding without imagery, and no imagery without
understanding. With the notion of imagery there are stressed the analogous mode,
roots in everyday lives, intuitions etc., - whereas with the notion of understanding
there is laid some accent on the propositional mode, on subject matter, on predicates

etc., - but both notions do not only appear together, rather they have a large do-
main of essence in comrnon.

4. There can be identified roughly four types of BIU for the use in mathematics

teaching in the primary and secondary grades:

(1) More or less global BIU, especially for the fbrmation of the concept of number
and for elementary arithmetic: multiplication as repeated addition; division as

parlitioning (splitting up; 'Aufteilen') or distributing (sharing out; 'Verteilen');

fractions as quantities or as operators, negative numbers as states or as opera-

tors, the machine model for operators, the little-people metaphor for running
through an algorithm. Basic imagery and understandings are not bound to pri-
mitive, non-quantifiable actions (in the sense of intuitive understanding accord-

ing to Herscovics & Bergeron, 1983), and their formation is not a kind of ma-

thematical propaedeutics or pre-mathematics, but - in my opinion - genuine

mathematics (ust without calculus with symbols). They would be useful in the

upper secondary grades as well, for example with the concept of limit and infi-
nitesimal thinking as a whole.

(2) More or less local BIU, e.g. the arithmetical mean, the internal rate of return

of an investment, the circumcircle of a regular polygon.

(3) BIU for extra-mathematical concepts, situations, procedures (from physics,

economics, everyday life etc.), which are to be used in mathematics teaching

(example: Ingo and the temperature).

(4) BIU for conventions, e.g. the meaning of symbols, or of diagrams. Example:

The teacher tries to explain subtraction with the help of the following situation:
"Mother baked six cakes for her daughter's birthday; the dog Schnucki ate four
of them. How many are there left?" She draws 6 circles on the blackboard and

crosses fbur of them out (each with one line), hoping to support visually the un-

derstanding of the problem 61-2 (fig. a): But Ralph, a learning disabled

child, wonders why the teachercuts the marbles into halves (Männ 1991).

It goes without saying that the prototypes, metaphors, metonymies (Presmeg 1994)

used for BIU should not obscure the concepts they refer to, or even falsify them, as

it is the case with the concept of circle in Papert's (1980) originäl idea of turtle geo-

L
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metry. The children shall draw a circle by programming the turtle to draw a

straight line of length 1 , then to do a right turn of the amount I , and to repeat

these two actions 360 times , i.e. by drawing a regular polygon with 360 vertices.
In fact, the result looks like a circle, but the way in which it was produced belongs

to a concept which is essentially different from the Euclidean circle. It's true, that
every line on the cornputer screen is a sequence of squares; but this is not the point,
as students with some experience with paper and pencil as well as with computer
screens will recognize the shortcomings of any realization of geometric forms and

will be able to idealize these forms, if at least the underlying activities are appro-

priate. - But the procedure for making a Logo circle is not appropriate for Eucli-
dean geometry. - Furthermore, I doubt that the Logo geometry is a good prepa-

ration for differential geometry, - eventually it is a helpful model for someone

who already has the concept of mathematical limit at her or his disposal, whereas it
is likely to be a mental obstacle for someone who is still on her or his way of ac-

quiring this concept, let alone for primary graders.

Basically , the area of a polygon is the answer to the question: How often does the

unit square fit into the polygon? The polygon has to be measured by the unit square.

- But even if the teacher stresses such measuring activities, students often form in-
adequate BIU of the concept of area, when and because the teaching focusses on the

formula A=p.e for the rectangle with side-lengths p and q . Teachers then tend

to teach the area as multiplication of lengths, which is a correct, but rather deep un-

derstanding of the concept, which should be grasped by the students later, but which
is not accessible to them at the beginning.

First of all, the formula just expresses the multiplication of two pure numbers,

namely the both numbers of unit squares fitting into the two sides of the rectangle

respectively. - In the classical German curriculum there is paid much attention to

this interpretation of the fbrmula, but in my opinion the concept of area is obscured

by an over-methodization (fig. 5): The rectangle is tiled with unit squares which
are grouped into p stripes each containing q squares, thus suggesting to the 10-

years-old students that they have to apply the operation of multiplication. Of course,

these BIU of multiplication are correct and adequate for - multiplication, still they

are by no means new to these students, but were acquired by them two years before,

when they had learned the operation of multiplication and worked a lot with rectan-

gular tields. The seemingly new treatment of multiplication now (without telling
that it is a mere repetition) suggests to the students that there must be sornething

special in connection with the concept of area. But this 'something special' remains

a mystery to them, because - as rve know - there i.s nothing special. Using mul-
tiplication is just an economic way of counting.
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In my own lessons I show the students a sketch of two diff-erently shaped garden

plots whose sizes they shall compare by tiling the plots with unit squares and coun-

ting the squares. I use to embed the problem in a story about two children who have

to mow their lawns and want to know who has to work more (of course, this does

not only depend on the area). After this introduction I give the students some work
sheets with which they can make the essential discoveries themselves. The only hint
is that they shall count in a clever way. Most of the students are able to work out the

basic ideas on their own: Divide the garden plots into rectangles, tile them virtually
with 'unit' squares, calculate their areas by trivial multiplications and additions, and

finally compare them (fig. 6). Later they also see that for this comparison one has

to use squares of the same size.

Transformation geometry: When in the late 1960s and early 1970s transformation

geometry was pushed into the mathematics curriculum, it was assumed that real mo-

tions of real objects could serve as BIU. In fact, the students accepted these BIU
willingly and transferred them easily into continuous motions of point sets in the

plane. But the crucial point was the abstraction of the motions, which the students in

general did not manage to perform. Their BIU of transfbrmations grounded on mo-

tions were so robust that the good advice to focus their attention to the starting and

final positions of the geometric forms or to the plane as a whole remained useless,

because, for example, the notions of starting and final position, again, evoked ima-

gery about motions (cf. Bender 1982).

Thus, mathematicians and mathematics educators failed to establish in the curricu-

lum the full algebraization of geometry by transformation groups, and up to today

geometric transformations are not treated as objects on their own, but only as

means to investigate geometric forms. The idea of embodying Piaget's groupings of
thinking schemes in geometric transformation groups had proved to be too naive.

There are reasonable applications of continuous motions, e.g. in good old congru-

ence geometry by Euclid and Hilbert: Two geometric forms are congruent, if they

can be moved so that they exactly cover one another. In German there is a synonym

for the word 'kongruent' which is due to this reciprocal covering (='decken'),

namely 'deckungsgleich' ('gleich'= 'equal'). In congruence geometry, different

from transformation geometry, the specific form of these motions is not essential at

all. So the students need not, cannot and, in fact, do not memorize them, and mo-

tions are not likely to turn into mental obstacles against viewing congruence as an

interrelation between two stationary geometrical forms.

For.functional reasoning in geometry and other mathematical disciplines, like calcu-

lus, there is needed a different, and stightly more abstract, concept of motion: What
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happens in the range of a function, if one 'walks' around in its domain'/ Example:
The area function assigns to each triangle of the Euclidean plane its area. Starting
with one triangle, one changes one of its vertices, and one observes, how the area

changes. - The metaphorical character of this situation is obvious: There is a space

(the domain, i.e. the set of all triangles) and someone or something (the variables)
who 'walks' around; ar-rcl the motions of this someone or sornething are transf'erred
by some mechanisrn. iike an abstract pantograph, into anclther space (the range, i.e.

the positive real nurnbers).

Here we have a good field of application fbr modern so called 'D),namical Geome-
try Sofituare' (DGS) like Cabri Geometre: The transfbrmation mechanism is hidden
in the programme, and the connection between the changes in the domain of a func-
tion and the resulting changes in its range are visualized in a direct and lucid way.
These possibilities, of course, refer also to transformation geometry with the Eucli-
dean plane as domain and range. In my opinion, it is the first time that this subject

could be taught to 13-years-old students in a not misleading way, namely without
continuous motions.

Unfbrtunately, one cannot eat the cake and keep it at the same time: Observing these

connections on the computer screen seems to lessen the students' motivation for fur-
ther investigations. What is more, the supporters of DGS have higher aims in their
mind, as they think, quite rightly, that the time expensive use of computers cannot

be confined to BIU. Thert is why, as far as I know, there is still no modern lower se-

condary school curriculum fbr transformation g.o-Ltry on the grounds of DGS.

5. In all times, all over the world, mathematics educators reflected and still do re-

flect on basic ways of imagining and understanding mathematical concepts, though

they usually do not name them like that and possibly have diff'erent or no conceptual

fiames. There is still missing a theory unilying the relevant disciplines 'mathema-

tics', 'epistemology' and 'psychology'. The work of vom Hofe and my work is one

attempt.

But the realization in didactical and teaching practice is at least as important as the

theory. Which basic imagery and understandings do we think to be adequate? How

can we support the students generating adequate basic imagery and understandings?

Which inadequate imagery and understandings can occur? How are they caused?

How can they be improved or corrected? - In my opinion, these are fundamental

questions of mathematics education.
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