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Abstract: 

Mathematics didactics are influenced by many other disciplines. Adopting their results and methods with-
out adapting them to the concerns of mathematics teaching often entails only short term progress, if any at 
all. In this paper several questionable paradigms originating from other disciplines are discussed together 
with how they are modified or reinforced by the inclusion of work with the computer. These considera-
tions are put into practical terms in the case of teaching geometry using so-called Dynamic Geometry 
Software (DGS). Careful investigations of the positive and negative effects are still needed. 

The paper is based on lectures given by the author at the 8th International Symposium on Mathematics 
Education at Klagenfurt, Austria, (see Kadunz et al. 1998) and at the annual meeting of the GDM 1999 at 
Bern, Switzerland, and mainly reflects the situation in German mathematics didactics. Thanks to John 
Searl in Edinburgh and Neveille Neil for their valuable comments and their help with the translation. 

Mathematics didactics are influenced by many other disciplines (pedagogy, general didactics, 
philosophy, psychology, social sciences, mathematics, etc.) and have to take into account, and 
even incorporate, their results and methods. At the same time however it is a scientific disci-
pline of its own with its own methods and results, comprising (at least) two different traits, 
namely descriptive and normative, both directed towards theory and practice at the same time. 
Didactical research includes not only empirical, but also 'engineering' methods (as Wittmann, 
1995, puts it). Of course, no mathematics didactician can cover the whole field, but they 
should take notice of the work of others within the field, possibly based on different scientific 
paradigms, e.g. the experience of mathematics teachers (Wittmann 2000), and not reject oth-
ers' ideas from the beginning. In particular they should not only accept those outcomes from 
research which fit their own theories (assumptions, beliefs), but also those which do not sup-
port them or which even contradict them. On the other hand, if methodologies from other dis-
ciplines are used puristically, i.e. without adapting them to mathematics didactics, for exam-
ple ignoring the mathematical, epistemological and/or cognitive structure of the involved spe-
cific subject matter, they may well result in surprising short-term findings. However, in the 
long run, they will be of little use for really improving mathematics teaching. Such extrane-
ous paradigms are, for instance: 

(i) Taking statistical methods from medical, psychological, economic or social research 
fields and often applying them to (the outcomes of) teaching-learning processes with-
out controlling, let alone establishing, such fundamental considerations as 

• how representative the sample is 
• the independence of the investigated attributes, and in particular 
•  the validity of the questions. 



 

(ii) Imposing a formalistic mathematical-logical structure on the collection of objects which 
are involved in the teaching and learning of mathematics (subject matter, cognitive op-
erations, social actions etc.). 

(iii) Reduction of human beings to information-processing beings, thus forcing a close rela-
tionship between artificial and natural intelligence. 

(iv) Neglecting social and other non-cognitive effects on mental processes. 

(v) Transporting philosophical and political theories and ideologies (for instance 'construc-
tivism' or 'situated' or 'social' or 'collective learning') into the field of education, and 
claiming pedagogical and didactical conclusions which are based on a minimal body of 
experience, if any at all (see Anderson, Reder & Simon 1995, 1996, 1997). (Of course, 
such descriptions of learning and understanding can provide insight in the classroom 
situation and in learning processes, but they are only partial understandings.) 

(vi) In close connection with (v): over-estimation of students' and under-estimation of teach-
ers' contributions to the learning processes. 

(vii) Again in close connection with (v): disregard for the subject matter as a major influenc-
ing variable in the teaching and learning of that very subject matter. 

These shortcomings have been the daily bread in the mathematics didactics community since 
the 1960s, and the quarrel about the so-called New Math was one of the first significant ex-
amples. It goes without saying that corresponding deficiencies adhere to other scientific disci-
plines as well, perhaps with the exception of mathematics. 

With the promotion of the computer as a tutor, a 'tutee', or as a means or a medium for 
mathematics teaching (and as a device for the science of mathematics teaching), the psycho-
socio-scientific structure of mathematics didactics has been given a fresh veneer, but has not 
essentially changed. One can go through all the items listed above, and one will find a com-
puter-based variant or reinforcement. I will indicate just a few: 

(ii) with (iii) and (iv). There is nothing wrong in modelling human intelligence or the human 
brain and neuronal system with a computer language (i.e. mathematically, ultimately). 
The fundamental fallacy consists of confusing the computer model with human cognition 
(as an abstract concept!). This identification may be a paradigm of the artificial intelli-
gence movement, but I cannot find evidence that it is of use in the education of children 
and adolescents in particular, if one strives to avoid (iv). 

(v) with (vi) and (vii). Surprisingly, parts of the computer-into-education camp (CIEC) claim 
to benefit from those 'soft' pedagogical paradigms mentioned above, based on simple 
lines of reasoning like: 

(a) From a constructivist point of view, the person who is originally called 'teacher' has 
to confine herself or himself to the function of an organizer and moderator. Hence the 
students take responsibility for their own work, and the computer is the ideal gadget to 
make the students independent from the teacher's direction. 



 

This argument misses several hard facts. As the teacher is replaced by the computer, the 
students' actions are still determined from outside and not only by an electronic appliance 
with all its well known technical, psychological and social shortcomings, but also by 
programmers who, when programming either Logo microworlds (in Papert's, 1980, lan-
guage), computer algebra systems or 'realistic' scenarios, did not have in mind that spe-
cial student and that special situation in which their computer programs are used. In the 
end students' actions are still determined by society, the school administration and the 
teachers as well, who will stay in control of what the students are offered even if schools 
were abolished and learning was to happen at home. 

The willingness and ability of young people to take it upon themselves to learn some-
thing independently is very restricted, as they lack experience, knowledge (as a require-
ment for acquiring new knowledge) and, last but not least, insight in the necessity of 
learning this particular thing or of learning anything at all. Whether human teachers in 
general deal well with this basic pedagogical challenge can be doubted, but that com-
puters do not has been appreciated even by the inner circle of the Logo community (see 
e.g. Hoyles & Sutherland 1990). 

Mankind has not only the longest adolescence time biologically among all creatures, but 
in our complex modern societies there is also need for an intensive social, intellectual, 
emotional etc. maturation of every individual. For the overwhelming majority, education 
by parents alone would be grossly insufficient (and impossible). Schools are an important 
part of the educational system and, as such, part of the real world. On the other hand, 
they themselves (as well as the knowledge, ways of thinking, attitudes etc. which they 
impart) are only models of the real world. Clearly, even if these models are poor, they 
would be immensely more impoverished if a leading role in education were assigned to 
the computer (in its actual application, even including virtual reality etc.). 

(b) When students are to work with computers in the classroom (which happens rather 
rarely in Germany but more frequently in Austria), quite often two or more students have 
to share one keyboard and one screen because there are less computers than students 
and/or there is a lack of space. This necessity is regularly claimed to be a virtue since it 
allegedly promotes 'social learning', 'key qualifications' (communication, working in a 
team etc.), responsibility for others, better learning, etc. 

Even if one agrees to these rather vague ideas, there is no evidence of great success. The 
actual work often concentrates on a small subset of the students. If better students 'help' 
the weaker ones, they often tend to execute the task completely, thus preventing the 
weaker ones from grasping the subject matter in question (cf. Vollmer 1997). When trade 
and industry urge the schools to promote teamwork, they have in mind above all that 
school-leavers should be able to fit into a team, and this is quite the opposite of how that 
qualification is understood in the pedagogical paradise. Working collectively can result 
in a loss of concentration and this drawback can be intensified by the computer screen 
with its bullying effect (i.e. a permanent call for action). Thus the learning of some sub-
ject matter, in particular of mathematics whose concepts demand mental effort, can be 
impaired. 



 

It must be questioned whether (even older) pupils have sufficient mastery of subject mat-
ter, communication, educational goals etc. for really successful long-term work which is 
independent of a teacher. In an extensive study, Kaiser & Blum (e.g. 1985), together with 
D. Burghes and N. Green from Exeter and Evesham, England, compared mathematics in-
struction in England and in Germany. In those areas where the German pupils did better, 
they identified one cause as the lower degree of direction among English teachers, which 
entails a lower amount of learning time for the weaker ones among English pupils. 
(Whether the work with computers can meet this drawback, as is hoped by the CIEC, is 
not clear.) 

(c) There is nothing wrong with social learning, learning to communicate, or taking re-
sponsibility, and all over the world schools endeavoured to promote these and similar 
virtues in the pupils. Only in the last few decades, however, in several Western countries 
has this been done at the expense of subject matter. This trend seems to be a pedagogical 
leftover of the 1960s student movement (which itself was part of a great social upheaval 
in many Western countries at that time). Here the institution of school, the role of the 
teachers and the structure of subject matter were denounced as parts of the authoritarian 
capitalist system (Marcuse). 

In spite of the computer's military origin and  its incessant and ubiquitous use by the mili-
tary, administration and business worlds and its dominant character towards the users, its 
potential as a pillar of that authoritarian system was ignored at that time. Despite some 
deep criticism (mainly not in terms of politics, but of psychology and sociology) many 
positive qualities were attributed to it such as 

• opening up the world of knowledge through its large memory 
• making complicated situations and deep concepts accessible through its multi- 

media potential (in particular: visualizing), or  
• making worldwide communication feasible via its net-like linking structure 

(Internet).  

Today, in Western societies and school systems, the computer has the image of relieving 
the users of old-fashioned restrictions of any kind. It seems as if students cannot help but 
'learn', if only the product to be learnt is wrapped up attractively enough (based on the as-
sumption that 'knowledge' is a product to be 'delivered' rather than a process). 

One of these restrictions seems to be the necessary, but time-consuming, hard work on 
mathematics (in general: with effort-demanding subject matter) at school (and in many 
university disciplines!), which is recognized as a fundamental way of acquiring and se-
curing knowledge. This is a prerequisite for autonomously coping with everyday life as 
well as for many vocational careers and an essential part of general education. In particu-
lar in informatics didactics (= computer science education) a clear trend away from 
mathematics can be observed, not only reflecting the ongoing rapid change of paradigms 
in computer science itself, but also as a specialization of modern pedagogy emphasizing 
general qualifications and neglecting 'hard' subject matter. 



 

The informatics didactician would argue that working on projects, modelling some real-
ity with the computer, experimenting with the model, describing the effects etc. is the 
subject matter of informatics. Many mathematics didacticians and teachers would also 
subscribe to this point of view for mathematics as well, at least in a moderate manner. 
Nevertheless, however the students' activities may be defined, there is a trend to spare 
them some effort with a lot of 'hard' mathematical concepts and with troublesome teach-
ing & learning methods. There is at least one good reason for this trend. In all countries 
throughout the world the classical teaching of (advanced) mathematics is quite ineffec-
tive (even though at the TIMSS there were countries with rather high scores). There is no 
evidence however that those pleasant-looking scenarios in which students independently 
explore computer microworlds, which have some mathematical content, would better 
meet the demands of society and the concerns of the individual. The improvement in 
mathematics teaching must proceed from the subject matter (cf. Bender 1998, Wittmann 
2000), and the computer can assist in this, as I will point out in the part about geometry 
teaching. 

The CIEC has added one more type of fallacy to those listed above. Overwhelmed by the 
technical power of the device and by the social change it has already caused, directly and indi-
rectly, and neglecting a lot of other variables, some proponents were (and still are) inveigled 
into 

(viii) Making far-reaching predictions of a psychological, social or pedagogical nature about 
how computers will change education. 

(a) In 1955 the Noble prize winner H.A. Simon predicted that within the next ten years 
chess computers would beat the best human chess players. Only now, at the end of the 
millennium, has the computer's level of expertise reached that of the top humans. In the 
meantime, by adjusting themselves to the computer's strategies, the best human players 
again managed to obtain better results, thus postponing the computer's final victory for a 
few more years. It is not the false estimation, by a factor of 5, of the time predicted until 
computers would play better chess than humans, but of the amount of computer memory 
and elaborate human-based strategies actually needed, which proves Simon's prophecy to 
be mere speculation at that time. Notably all this applies to a simple game like chess 
which has only some two dozen rules. 

(b) In his Logo-based educational utopia, the computer scientist S. Papert (1980) pre-
dicted the abolition of public schools and their replacement by computers which would 
be available in every private home. In an interview in 1998 he committed himself to a pe-
riod "within the next 20 years" (in America? Worldwide?). This prophecy can be taken 
as a striking example of a computer-based one-sided view on present and future political 
and social reality (see Bender 1987). 

(c) Similarly the German computer educationalist K. Haefner (1982), reviving a catch-
word from the early 1960s (Picht), predicted a deep educational crisis for the mid 1980s 
(in Germany?) caused by insufficient use of computers in the educational system. This 
crisis would only be surmounted by an immense intensification of their use. Every gen-
eration of educationalists seems to identify a crisis in the educational system. Possibly it 



 

really is in permanent crisis but there is no evidence that this is due to, and can be over-
come by, the computer. 

(d) With respect to the timing and the scope of the subject matter, the prophecies for 
mathematics instruction are more moderate, but within the framework of this discipline 
they sometimes also sound rather radical. Here it is the working mathematician or the 
aficionado of geometry who is pleased with the possibilities of a Computer Algebra Sys-
tem (CAS) or so-called Dynamic Geometry Software (DGS). They believe that this can 
and will be adopted more or less literally by the schools and will dominate mathematics 
teaching (e.g. Hanisch 1992). 

Meanwhile, in the computer branch of the German-speaking community of mathematics di-
dacticians, the early enthusiasm of a few has given place to a more cautious approach by the 
majority (cf. the annual reports of the group 'Mathematics Teaching and Informatics' in the 
GDM, Hischer 1992ff, and Herget, Weigand & Weth 2000f). 

Now, as ever, mathematics is an indispensable element of general education. Traditional 
mathematics teaching, more or less similar all over the world, has several approved essentials 
of which the most important is some guidance of the learning process by a teacher. It is true 
that traditional mathematics instruction is not very effective and that teachers do not really 
have the learning processes under control. However there is neither evidence nor experience 
under everyday conditions that autonomous learning in general, and also if based on work 
with computers, would be at least equally (let alone more) successful. (The phrase of autono-
mous learning is actually a contradiction in terms as long as there is some specific support, 
and I question whether, as such, it is desirable, not to mention achievable.) 

There have been attempts to re-define mathematics in order to adjust it to working with com-
puters (e.g. Horgan, 1993, on the university level, or Papert, 1980, on the 'school' level), but 
they gained little success. Indeed new branches emerged (cryptography), old problems were 
solved ("four colours suffice") and examples and counter-examples could be found and calcu-
lated more easily. Each mathematician has become their own typesetter, and at school several 
skills lost importance (e.g. doing complicated elementary calculations in an automated man-
ner because of the existence of the pocket calculator) or gained importance (e.g. visualizing 
situations, concepts, relations etc., because of the potential of CAS, DGS etc.). However, in 
the deepest depths of its substance, mathematics, at all levels, remains the same. This resis-
tance is not due to the inertia of the system of established mathematicians, didacticians and 
teachers, as several revolutionary representatives of the CIEC suspect; rather it comes from 
the subject matter itself. Still, the computer is a valuable tool for doing mathematics at all 
levels and neither the mathematics researcher nor the mathematics teacher can renounce it 
with a clear conscience. 

One of the main desires of contemporary mathematics didactics is the integration of the com-
puter into 'the' mathematics curriculum. In the domain of geometry there is some special re-
search on the stimulation of formal talents like working creatively, independently, collectively 
etc. (Hölzl 1994, Laborde 1998, Weth 1997 and others) and some practical realization with an 
accent on subject matter (Elschenbroich 1997, verbal communication by Kadunz, and others), 
all of them with more or less positive and negative results. In the meantime it is common 



 

knowledge that utilizing a spreadsheet, a CAS or a DGS for doing or for learning (by doing) 
mathematics requires an elaborate body of mathematical understanding, knowledge and skills 
(which may be further developed with the help of the computer). There are also some pieces 
of patterns emerging for medium-term mathematics instruction integrating computer and non-
computer work (Baumann 1998 and Hole 1998). In Austrian high schools a lot of mathemat-
ics teaching is actually done with the use of computers (Wilding 1998, Wurning 1997 and 
many others). In Germany also there have been (and still are) several more or less isolated 
projects, often with outstanding teachers and high achievers which use the computer inten-
sively in mathematics teaching (Lehmann, 2001 and many other papers, Thode 2001, and oth-
ers). 

Unfortunately a long term curriculum, say for geometry teaching, is still missing from the first 
to the tenth (or 13th) grade. I do not call for a direct realization in schools, but for a basis on 
which, at first, a broad academic discussion and then concrete syllabi, schoolbooks, mid- an 
short-term lessons, methods etc. can be founded. Geometry has close connections to the rest 
of mathematics, to many other disciplines and to the real world (including the computer with 
its many applications) while at the same time it can be treated quite separately. This work 
would be much more extensive and harder than writing a school book in the conventional 
way, where one has other school books as a stimulus for good ideas and a long and elaborated 
tradition of goals, contents and methods (and it would not be pecuniarily lucrative). Of course 
there have to be the customary differentiations, but now there is one more differentiating ele-
ment, namely the computer, e.g. in the appearance of a DGS like Cabri Geomètre. (With the 
permanent 'danger' and chance of a revolutionary further development, one should not cling 
too narrowly to the specialities of one software package). There have to be alternatives with 
more or less intensive use of the computer but first of all the goals and then the contents (also 
mathematically, but mainly epistemologically and psychologically) and the methods have to 
be re-analyzed in the light of the new possibilities and restrictions. For each teaching unit 
careful consideration has to be given to which understandings of concepts, knowledge and 
skills have to be provided, and which are to be developed, how the computer channels this 
development and how its influence can be made use of. The whole analysis is (I repeat) pri-
marily about subject matter under epistemological, psychological and sociological aspects. As 
an ideal scenario (ignoring all secondary and tertiary problems and paradigms) one should 
visualize a classroom with the students being active under the general, and, if necessary, also 
under the detailed guidance of the teacher. 

There are rather early approaches by Schumann (e.g. 1991, 251ff) connecting traditional and 
computer-oriented geometry and analyzing didactical and methodological questions in detail 
but proper attention was not given to this work. Instead of exploring the basic ways of under-
standing and imagining geometrical concepts (cf. Bender 1998) which the students should 
and/or would adopt, the students were often confronted with rather sophisticated tasks, and 
their behaviour towards these tasks was investigated (Hölzl 1994, 2000, Laborde 1998 etc.). 
The analyses of classical geometry didactics, in particular of transformation geometry and the 
role of (continuous) motions (based on a tradition which is more than 100 years old) (e.g. 
Bender 1982, Bender 1989, Schwartze 1990), were often not taken into account, although 
they prove to be highly relevant for the didactics of DGS with its drag mode. Here are some 
of the old (and a few newer) arguments: 



 

1. Transformation geometry is motionless geometry, as transformations are one-to-one 
mappings from the plane onto itself without moving any point of the plane. Unfortu-
nately, the notions (e.g. rotation) as well as the usual way of introducing them, namely by 
moving pieces of paper on a plane or suggesting the imagination of such a motion, leads 
the learners unavoidably to misconceptions, which, as all experience shows, almost never 
can be repaired. Here we have a striking example of what Sierpinska (1990) calls 'mental 
obstacle' and which she thinks is insurmountable. 

But if we leave aside the question of whether students should form a rather abstract alge-
braic concept of geometric transformation at all or just use transformations as naive tools 
for investigating geometric figures, the computer can support the formation of that alge-
braic concept in at least two ways. The pixels which bring about the picture on the com-
puter screen can be viewed as realizations of the points of the plane. It can be made com-
prehensible for (nearly) everybody that they do not move. By supplying them with col-
ours, parts of them can be united so that they form some (meaningful) shape (e.g. a trian-
gle). By changing the colours in the right way, the illusion can be evoked that the shape 
moves without the points moving! It is like a wave in the ocean: it is not the water mole-
cules which move from Hawaii to Japan, but their stimulated state of bouncing up and 
down. Of course, the metaphor of the computer screen can be used without its physical 
presence, but the students should have some experience with it. 

The next useful attribute of the computer (which has nothing to do with the drag mode of 
DGS!) is to produce copies of a given shape, which are either congruent with the original 
shape or distorted following some rule. They can be situated at any required position, 
without any continuous transformation, thus avoiding the misconception described 
above. 

2. However a large portion of geometric activities has to do with continuous motions or, 
more general, with continuous changes, and here the DGS can unfold its talents. These 
activities can be subsumed under the most important general didactical principle of func-
tional thinking which can be formulated as:  

• to aim at structuring problem situations with (mathematical) functions (mappings, 
transformations) mapping some domain into some range 

•  to cruise deliberately through the domain and to observe the effects of this cruising 
in the range.  

For example: let  F  be the function which assigns to each polygon its area, and consider 
all triangles with two fixed vertices  A  and  B . How does the area depend on the third 
vertex  X ? Alternatively let  R  be the composite mapping of two reflections. As one 
moves from one triangle to another ('move' the triangle), what is the resulting motion of 
its image (after one, after both reflections)? 

Although continuity of the changes is not necessary, it is very useful in order to recognize 
the underlying mathematical laws because it is an important means of deriving relation-
ships between the covered positions and thus representing the resulting changes in a con-
crete manner. Before the advent of DGS, one had to make do with discrete sequences of 



 

pictures, and the students had to supply them with continuous transitions (if the teacher 
wanted them to produce continuous interpretations and mental images). 

This is quite different from the idea of the early Geometric Supposer(s) (Schwartz & 
Yerushalmy 1985), where the computer produced triangles of a kind (say, isosceles) one 
after the other with the help of a chance generator and there was no claim to any transi-
tion between the triangles at all. 

Of course the motion of a triangle, produced in a DGS with the drag mode, is also a dis-
crete sequence of still pictures, but it is to be regarded as continuous and it usually is. 

3. Seen idealistically, there are mainly two phases of the learning process where the drag 
mode can be brought into play. Firstly when approaching a new domain, problem, con-
cept, theorem etc., in order to get acquainted with it and to discover, reject or reinforce 
conjectures. Secondly, after the treatment of a certain domain, problem etc., in order to 
get an overview, to deepen and secure the insights, to make new discoveries and to make 
plain the meaning of the new knowledge. 

In my opinion the second phase is the major application of the drag mode by the students 
(without excluding the first phase or the phase(s) in between). Having themselves a much 
higher level of knowledge, experience and love for their subject, computer geometry di-
dacticians and teachers tend to over-estimate the students' capability and motivation to 
put their own questions and answer them self-reliantly with the help of the computer. As 
nearly all studies show, learners need ample support in the initial phase, and the phrase of 
discovery learning, allegedly one of the benefits of the work with computers, seems not 
to be suitable in general. Things look different however, when the learners have some 
mathematical experience, understanding, knowledge and skills at their disposal. 

4. Two major problems of classical geometry didactics and teaching are connected with the 
concept of mathematical proof. First: a great many assertions in the field of geometry 
seem to be evident to novices, whereas the expert knows that they have to be proved. 
Second: how can a novice tell when a 'proof' is a proof? Both problems are exacerbated 
in computer geometry teaching. 

The computer's image of infallibility, its graphical talents and the reproducibility of some 
peculiarity (if it is based on a rule) can even more diminish the students' insight into the 
necessity of proving this peculiarity. In particular, the teacher who stresses the making of 
discoveries can evoke the idea in the students that the work is done as soon as the dis-
covery is made. 

The question of whether in a geometric situation there is something to be proved, can be 
regarded as an extreme case of the second question "when is a 'proof' a proof?". — I want 
to illustrate the extra difficulties connected with DGS with the following examples: 
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                                             Figure 1: Euclid's Theorem 

Figure 1 illustrates Euclid's Theorem. The square  AEFC  can be mapped onto the paral-
lelogram  AEF'B  by a shearing along  EA , then onto the parallelogram  ACF"B'  by a 
rotation by  90°  with centre  A , and finally onto the rectangle  ADF"'B'  by a shearing 
along  AB' . As all these mappings are area preserving, the original square has the same 
area as the final rectangle. The three mappings can be represented as continuous motions 
(respectively deformations) and thus made more vivid, but this does not prove anything. 
One must know from other conclusions that shearings and rotations preserve area. For 
shearings there are plausible arguments (for rotations anyway) i.e. during the (continu-
ous) shearing the form gains at the head of the deformation the same amount of area as it 
loses at the tail. If one considers finite time intervals, this is basically the argument of 
classical geometry, and it applies immediately to the whole interval i.e. to the transition 
from the starting state to the ending state, and there is no motion (needed) at all. Intro-
ducing the idea of infinitesimal changes either requires very elaborate concepts from cal-
culus which are usually not available at this stage of the curriculum and in addition are 
not adequate here, or lead to an extremely vague, if not faulty, argument. 
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                                    Figure 2: The largest isosceles triangle 



 

Figure 2 (an example by T. Weth) shows (up to congruence classes) all isosceles trian-
gles  ABX  with their legs  AB  and  BX  of fixed length c, the angle at  B  varying from  
0°  to  180°  (both excluded), i.e. the vertex  X  moving on a half circle with centre  B  
and radius  c . At each position of  X  (with distance  d  from the straight line through  A  
and  B ) the triangle has the area  c·d/2  and as  c  is fixed, this value is maximal, if and 
only if  d  is maximal. Either one accepts as being obvious the fact that  d  is maximal 
when  X  is on the 'top' of the circle ( B=D ), or one must go on with the proof. If  D≠B , 
then there is a triangle  BDX  with the side  BX  lying opposite the largest angle (namely 
the right angle  BDX ). Thus  BX  is the largest side, whence  d<c . Whereas, if  D=B , 
then  d=c . 

The assertions used here ('if one angle of a triangle is a right angle, it is the largest' and 
'the largest side lies opposite the largest angle') can again be taken as obvious, or ulti-
mately they have to be deduced from a system of axioms. Of course, in modern geometry 
teaching nobody really works axiomatically. However even if several obvious 'facts' are 
taken as starting points for geometrical reasoning, it is not only a matter of the students' 
deficiencies but also a consequence of the curriculum if it is often not clear when a 
'proof' is a proof. This is because it is often not clear in principle whether or not a fact is 
obvious. 

Again, on close inspection, the continuous motion of the vertex  X  does not deliver the 
proof directly, only indirectly. In order to create continuous motion one looks for a locus 
of a point, thus reducing the space of solutions from the plane to a line. In the end one 
has a one-dimensional set of points, of which one (several, or none) has the quality in 
question, thus representing the solution. There remains, of course, the task of finding the 
right point whose locus shall be considered, which can make many a geometric problem 
a difficult one even for experts. 

In order to structure the situation, and, in doing so, to get an idea of the position of the 
solution and hence a proof, it is obvious and reasonable to pass through the locus con-
tinuously and directedly, i.e. to use the drag mode, either in one's imagination or with a 
DGS. This distinction between the (indirect) mathematical and the (direct) didactical 
function of the drag mode does not always seem to be clear to didacticians and teachers, 
let alone to students. 

Anyway, there remains the crucial problem of translating the conditions of the task into a 
system of objects of the DGS and of cleverly omitting one of those conditions in order to 
create a suitable locus as a cognitive basis for the proof. 

For more arguments and more examples see Bender (1989). 

5. In spite of all the assumed and actual visualizing and stimulating benefits associated with 
using the drag mode there will be a lot of problems which can be treated better on the ba-
sis of discrete sequences of pictures or of just one picture (cf. Lewalter 1997) 

• whether the students' attention can be better drawn to the essential features (if the 
problem does not consist of finding them) 



 

• whether they are distracted by the impressive visual features of the DGS 
• whether they do not feel urged by the drag mode to be active 
• whether they are seemingly granted more freedom 
• whether they have no choice but do mental geometry 
• or geometry teaching includes more content than just pencil-and-paper geometry 

(PPG) (on the computer screen or on real paper). 

6. One of the weak points of DGS is their extensive disconnection from real-world geome-
try. Some of the main causes of the worldwide decay of geometry teaching in the last 
century were the treatment of geometry 

• as an axiomatic theory of the Euclidean plane 
• as a range of applications for algebra 
• as a theory of the relations of point sets in the plane 
• as a collection of sophisticated constructions and proofs 
• in short: as pure mathematics. 

All along there has been a broad movement in geometry didactics which has striven for a 
closer connection between geometry teaching and the real world thus making the teach-
ing more vivid, more application oriented, including more intensively real actions (draw-
ings, handicrafts etc.) and more directed towards the needs of the students. In contrast to 
this, following nearly all the papers relevant to the subject, DGS just transfers PPG (with 
many more features, but still disconnected from the real physical world) to the computer 
screen, thus again laying a much stronger emphasis on PPG. Because of the old reasons 
(which I cannot discuss here in depth) it is doubtful whether this will re-animate school 
geometry. 

7. There is no doubt that today DGS have to be a part of the geometry curriculum. With 
their features such as the drag mode, production of loci, the technique of subprograms 
(modularity), the possibility of continual accurate measuring, arrangement of colours 
etc., they cover an essential part of that curriculum, namely PPG. At the same time they 
give rise to basic experiences with New Media, and hence they create some distinguished 
connections to the real world - not to the physical one, but to the visual one, which is be-
coming more and more important to all of us. 
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