\[\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x \]

\[e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n \]

\[t \frac{\sin(t)}{t} = \begin{cases} \cos(t) & \text{if } t \neq 0 \\ 1 & \text{if } t = 0 \end{cases} \]

\[\int_0^\infty e^{-x} \, dx = 1 \]

\[\frac{d}{dx} \log(x) = \frac{1}{x} \]

\[\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \]

Theorem: If \(f \) is a continuous function on \([a, b] \), then for any \(c \in (a, b) \),

\[\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx \]

Proof:

Let \(f \) be a continuous function on \([a, b] \), and let \(c \in (a, b) \). By the Fundamental Theorem of Calculus, for any \(x \in [a, b] \),

\[F(x) = \int_a^x f(t) \, dt \]

is an antiderivative of \(f \). Then,

\[F(c) = \int_a^c f(t) \, dt \]

and

\[F(b) = \int_a^b f(t) \, dt \]

Therefore,

\[\int_a^b f(x) \, dx = F(b) - F(a) = \int_a^c f(t) \, dt + \int_c^b f(t) \, dt \]

\[\blacksquare \]

Application:

Consider the function \(f(x) = x^2 \) on \([0, 2] \). Let \(c = 1 \), then

\[\int_0^2 x^2 \, dx = \int_0^1 x^2 \, dx + \int_1^2 x^2 \, dx \]

\[\left[\frac{x^3}{3} \right]_0^2 = \left[\frac{x^3}{3} \right]_0^1 + \left[\frac{x^3}{3} \right]_1^2 \]

\[\frac{8}{3} = \frac{1}{3} + \frac{8}{3} \]

\[\frac{8}{3} = \frac{8}{3} \]

\[\therefore \text{The statement is true.} \]

Remark: This theorem is a powerful tool in calculus, allowing us to break up integrals into smaller, more manageable pieces. It is widely used in various applications, including physics, engineering, and economics.